
Using a Discourse-Intensive Pedagogy and Android’s App
Inventor for Introducing Computational Concepts to

Middle School Students

Shuchi Grover
Stanford University

Graduate School of Education
Stanford, CA 94305

shuchig@stanford.edu

Roy Pea
Stanford University

 Graduate School of Education/
H-STAR Institute

Stanford, CA 94305
roypea@stanford.edu

ABSTRACT
Past research on children and programming from the 1980s called
for deepening the study of the pedagogy of programming in order
to help children build better cognitive models of foundational
concepts of CS. More recently, computing education researchers
are beginning to recognize the need to apply the learning sciences
to develop age- and grade-appropriate curricula and pedagogies
for developing computational competencies among children. This
paper presents the curriculum of an exploratory workshop that
employed a discourse-intensive pedagogy to introduce middle
school children to programming and foundational concepts of
computer science through programming mobile apps in App
Inventor for Android (AIA).

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education–computer science education, curriculum,
literacy

General Terms
Design, Human Factors, Languages.

Keywords
App Inventor, Android, Computational Thinking, CS Ed Research,
Experience Report, Introductory Programming, K-12 Instruction,
Middle School.

1. INTRODUCTION
Wing’s articles [22, 23] have been influential in arguing
for adding computational thinking (CT) to every child’s
analytical ability as a vital ingredient of STEM learning in K-12.
The tailwinds in the larger environment have further fanned this
belief. The imperative for computing education in K-12 has
gained momentum not only following alarming reports [21] but
also due to the surging interest in STEM learning since the turn of
the 21st century. There now appears to be growing consensus
around the view that all children must learn CT and be offered a

robust introductory exposure to computer science in K-12.
Globally as well, countries around the world are beginning to act
on the rationale for introducing computing education as early as
middle school in order to train young minds in this discipline and
way of thinking.

How do children best learn computational concepts? Seymour
Papert’s pioneering efforts in the 1980s around children,
programming, and the development of procedural thinking skills
through LOGO programming [16, 17] inspired a large body of
research studies. This previous literature on children and
programming (such as [7], among others) revealed the types of
problems children experience on their way to understanding
computing, and overwhelmingly called for a need to study the
pedagogy of programming in order to help children build better
cognitive models of foundational concepts of CS. However, most
recent research in computing education and CT in K-12 that has
used Wing’s article as a springboard, has focused less on
pedagogy and process, and more on tools for CT development,
and learner-created programming artifacts to assess development
of CT. Thus, despite the flurry of recent research activity on CT,
many key questions still remain unanswered, and there is much
that needs to be done to help develop a more lucid theoretical and
practical understanding of how children come to understand
computational concepts and thus how best to design the teaching
and learning experience [5].

Pertinent to this context, it is a subsequent call from Jeannette
Wing that deserves more attention than it has received thus far. At
the “Workshop of Pedagogical Aspects of Computational
Thinking,” convened by the National Academy of Science, Wing
argued for an application of research in the sciences of learning to
design grade- and age-appropriate curricula for CT to maximize
its impact on and significance for K-12 students [14]. In a view
echoed by Alfred Aho at the same workshop, Wing acknowledged
that the application of the learning sciences to fields like math had
helped successfully develop learning progressions that have a
solid foundation in research on the human brain and how it
enables the learning of mathematical concepts. In contrast,
computing has thus far been introduced to children in K-12
without much thought of how children will best learn CS
concepts.

Key research findings in the learning sciences in the past couple
of decades have been centered on learning as a social endeavor.
These have included investigations of cognition and learning as it
occurs in socio-cultural contexts, with all the attendant ideas of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

723

situated learning, distributed intelligence, cognitive
apprenticeship, embodied cognition, as well as activity,
interaction and discourse analysis. Computing education curricula
and pedagogy, as well as recent research in CT, have thus far not
really leveraged these new developments on how children learn.

2. CLASSROOM DISCOURSE
The work presented in this paper draws on the well-known
Vygotskian theoretical framework that emphasizes the importance
of social interaction in the development of individual mental
processes. Learning is a social activity, and speech unites the
cognitive and the social [1]. Thus, in order to foster the
development of any competency in a social context inside or
outside the classroom, it is crucial that the pedagogy and
curriculum pay attention to designing communication activities so
that they foster better student learning. Learning scientists believe
that in the process of guided knowledge construction, tasks,
representational tools, and talk are inextricably intertwined [20]
and that “sense-making and scaffolded discussion, calling for and
elicited by particular forms of talk, are seen as primary
mechanisms for promoting deep understanding of complex
concepts and robust reasoning.” Recent research on classroom
discourse especially in math and science classrooms has revealed
learning gains and better understanding through the use of
discourse-intensive pedagogical practices where tasks are
combined with interactions among learners, and productive
teacher-led discussions.

3. PILOT AIA WORKSHOP FOR MIDDLE-
SCHOOL STUDENTS
3.1 Designing for Discourse in a
Computational Setting
Different domains and settings call for different types of tasks,
discourse and activity [9]. The workshop pedagogy described here
took the novel approach of bringing ideas of classroom discourse
from the learning sciences to the teaching of introductory
computational concepts. The curriculum of this pilot workshop
was thus designed around what we would like to call out as
“Computational Discourse,” where learners would be
introduced to ideas of computer science through building
competencies in computational thinking by knowledge building
discussions in concert with engaging in computationally rich
activities. Based on past research on classroom discourse, the
broader goal and belief was that through the process of
“academically productive talk” [10], interactions, discussions and
collaborations amongst learners and teacher, children would be
supported in their “doing programming”, making sense of
computation concepts, thinking computationally, and developing a
new vocabulary in practice. In doing so, learners would at the
same time take on a new identity – that of computational thinker
and computer scientist – which would build upon and transform
their current understanding of computational concepts and ways
of speaking about them and, ultimately, how these concepts and
competencies relate to the goals that they have and what they
imagine themselves doing in the future. Analogous arguments on
the synergistic development in knowledge, skills, discourse and
identity that learning environments should seek to support
underlie the new K12 Science Education Framework and
associated K12 Science Education Standards [15].

The following sections describe the pilot workshop, its
curriculum, and the learning experience that evolved through

teacher-learner discussions. The goals of the workshop (and the
larger research on CT that it was a part of) were to understand and
describe-

a) How computational discourse played a role in a
computationally-rich learning setting that aimed to foster the
development of CT, and

b) The appropriateness of App Inventor for Android (AIA) as a
tool for fostering discourse and computational learning in
such a setting.

3.2 Participants and Activities
Seven middle school students (3 girls, 4 boys; mean age: 13 years)
with little to no prior programming experience were recruited to
participate in a pilot workshop for middle school children titled
‘Build Your Own Mobile Apps’. Since the workshop was part of a
broader research to study the process of development of
computational thinking in tweens and teens, the students were also
informed that this entailed participation in a research study, and
IRB-approved assent and consent was sought from the
participants and their parents.

The study was conducted over a daylong workshop from 8:30 am
to 5:30 pm in a university research lab. One of the authors was the
lead researcher for this study as well as the sole facilitator of the
workshop. A couple of volunteers provided minor assistance with
video capture, and in helping one of the participant groups think
through their final app project. Each participant was provided with
a laptop and an Android mobile phone device that had been
organized for the purpose of the workshop.

For the purposes of research, the following data was collected or
captured:

1. The participants filled out brief pre- and post- workshop
surveys. The pre survey aimed to gather basic information
about the participant’s age, grade and prior experience with
programming and knowledge of mobile phone apps. The post
survey aimed to get a sense for the participants’ workshop
experience, what they learned during the day, and how their
views of what apps are and how they work had evolved.

2. Video capture of the whole room via 2 cameras.
3. Camtasia capture of each of the student laptop screens with

picture-in-picture webcam capture of the participants as they
worked on their apps.

4. Additional audio capture via recorders placed on the table
around which the participants were seated.

3.2.1 AIA Workshop Curriculum
The workshop was divided into two distinct sessions separated by
a lunch break. The morning session was spent introducing the
participants to the basics of building mobile phone apps using
AIA. Since the purpose of the research was to examine a
discourse intensive pedagogy for introducing children to
programming and foundational computational concepts, the
curriculum was designed to be driven by discussion and questions
emerging from three introductory collaborative programming
exercises that were borrowed from the book, App inventor: create
your own android apps [24], and performed as a whole group (See
Table 1). The facilitator’s laptop was connected to a large screen
to facilitate discussion and activity involving the entire group,
with each participant following along on his/her own laptop and
mobile device as well.

724

Table 1: List of introductory examples
Activity App and Features
App
Example#1
–Hello Purr

Original “Hello Purr” App enhanced to include
response to vibration sensor & clock timer events;
picture taking and text-to-speech to greet when
tapped; modified to have cat or tiger image appear
randomly with ‘meow’ or ‘roar’ sound.

App
Example #2
- Paint

Paint App enhanced to dynamically change radius
of dots and width of line; subsequently modified to
include features of Example#1 i.e. set canvas
background to picture clicked and doodle on it

App
Example #3
- Animation

Basic Animation- 2 sprites moving at random
around the screen; timer events; coordinate system
of phone screen; random number generation

At lunch, students worked in pairs to brainstorm ideas for the apps
that they would build based on what they had learned in the
course of the morning session. The afternoon was spent
programming apps in pairs (except for 1 participant who preferred
to work alone).

3.2.2 Final Projects
By the end of the day-long workshop, the participants had
developed the following 4 apps that they demonstrated to the
group—

 An app to help a child avatar gather all the candy on the
screen by dragging him around to each candy. The app kept
score of the candy gathered. The participants attempted to
incorporate a countdown timer to gather all the candy within
a specified time, but ran out of time before they could fully
implement that feature.

 A whack-a-mole app that keeps score of the number of moles
whacked; (note that the teacher had made passing reference
to this game in the morning session, but the students
developed it on their own. It was thus quite distinct from the
Mole Mash example on the AIA website; it used images of
moles that popped out of the ground (the background was
carefully selected accordingly), and some moles appeared
and then disappeared if they had not been whacked (this
would impact the score). The students were in the process of
developing a second level (after a certain score had been
attained), which entailed having the moles appear at a faster
rate.

 A bowling app where the goal is to have the ball hit a set of
pins moving back and forth horizontally.

 A music jukebox app.

4. EVALUATION
4.1 How did Computational Discourse shape
the learning experience?
Qualitative data analysis that involved coding for “discourse
moves” in audio and video transcripts indicated the substantial
and significant role that discourse–-specifically learner questions
and participant actions–-played in the flow of the workshop
curriculum. Group discussions significantly influenced the
organic introduction and use of new vocabulary as well as
important foundational computing concepts that the learners had
been previously unaware of.

As an analytic strategy, we also looked for conditions in the
context that precipitated learners’ inquiry into, and use of, CT. In
some instances it was the design invitation of an undesirable

outcome or a critical omission that led to productive discourse and
introduction of key CT ideas. In all these instances, the facilitator
appropriately mediated these opportune “openings” to foster a
discussion of key ideas of programming and computing.

Five illustrations of this phenomenon are provided in the
subsections below. They describe the scenario that preceded a
learner comment or action or question, and the ensuing discourse
moves made by the facilitator. While these examples are merely
illustrative, they provide clear evidence of how learner and
facilitator responsiveness to emergent issues at the intersection of
task, tools and talk in the course of a discourse-based introduction
to simple programming concepts served to trigger opportunities
for incorporating more advanced computing concepts, vocabulary,
as well as features for learning and solving problems
computationally in an organic and meaningful way.

Evidence from Camtasia screen and webcam captures of
conversations during the app programming process, as well as
pre-post surveys are still being analyzed, but preliminary results
reveal a significant growth in CS vocabulary as well as use of
important CT elements in the context of building mobile apps.

4.1.1 Illustrative Example #1
Scenario: In the original ‘Hello Purr’ app, the user taps the image
of a cat and hears a ‘meow’ sound. The facilitator talked about the
clock as another way of generating a ‘timed’ event at regular
intervals and asked students to change the app to respond to a
clock timer event (every one second) to play the “Meow” sound
(instead of the initial design of responding to the user tapping the
cat image). This led to the annoying (undesirable) result of
‘meow’ sounds every second.

Participant Question: “What if I, umm, just wanted the cat to
meow five times?

Teacher-initiated Discourse Moves (that influence the
curriculum trajectory): Design invitation of an undesirable
outcome led to introduction of –

 Concept of keeping count using a ‘counter’
 Variables (and explanation of what a ‘variable’ is)
 Conditional statements and if-then checks to make the

program do one thing or another

Analysis: All these were new ideas and associated CT vocabulary
terms that were organically introduced, arising from a learner
need. These went far beyond the concepts introduced via the
‘Hello Purr’ app as described in the AIA tutorial.

4.1.2 Illustrative Example #2
Scenario: While the group was modifying the original ‘Hello
Purr’ app as described above-

Participant Action: One participant discovered a way to program
the app to take a picture using the phone camera.

 Teacher-initiated Discourse Moves (that influence the
curriculum trajectory): The facilitator’s attention was drawn to
this when she heard the click of the phone camera shutter.
She decided that the next enhancement to the ‘Hello Purr’ app
would be to have the students take a picture of themselves to
replace the original image of the cat and say their name (using the
“TextToSpeech” command) instead of playing the ‘meow’ sound.

Analysis: Two new features were introduced to a whole group as
a result of a learner action – using an image clicked using the
phone camera as well as the use of the TextToSpeech command.

725

4.1.3 Illustrative Example #3
Scenario: In the ‘Paint’ app, participants were taught how to draw
a circle of a certain radius at the spot where the user taps the
phone screen.

Participant Question: “Can we add a button or something to like
change the radius?”

Teacher-initiated Discourse Moves (that influence the
curriculum trajectory): The facilitator used this opportunity to
explain the idea of hard-coding values versus being able to
dynamically change a value based on user input. This led to a
program enhancement where the idea of a “text box” for user
input was introduced and the radius was set based on the value
specified by the user.

Analysis: Crucial but oft-used mechanics of programming were
introduced based on a perceived need in the app detected by a
learner.

4.1.4 Illustrative Example #4
Scenario: The same ‘Paint’ app described above originally had
only 4 buttons – one for each color red, blue, green, yellow. The
participants were playing around with the app-

Participant Question: “Is there an Erase button to bring the
screen back to a clean canvas?”

Teacher-initiated Discourse Moves (that influence the
curriculum trajectory): This, again, was a design invitation of a
critical omission of an essential feature that gave an opportunity to
discuss how to “reset” a system state, and also how a user
requirement dictates new functionality.

Analysis: Once again, a commonplace but crucial computational
concept was introduced based on a perceived need in the app
identified by a learner.

4.1.5 Illustrative Example #5
Scenario: After incorporating the ‘Erase’ button in the same
‘Paint’ app described in the subsections above, as students were
playing around, making funny images like smiley faces, one
participant made a rather pretty drawing of a flower and asked the
following question.

Participant Question: “What if we wanted to save these
drawings?”

Teacher-initiated Discourse Moves (that influence the
curriculum trajectory): This, again, was a design invitation of
an omission in the functionality. It prompted the facilitator to talk
about persistence of data beyond the life of the program, working
memory, RAM vs. hard disk storage, and a brief explanation of
databases, too, even though it was not possible to incorporate
these into the program just then.

Analysis: Once again, a perceived need in the app detected by a
learner, prompted the organic introduction of fairly advanced CS
concepts that would not normally be discussed so early in an
introductory CS/programming session.

4.2 How did App Inventor for Android fare
as a tool for fostering discourse and
computational learning?
App Inventor for Android is a visual programming environment
for developing mobile apps for the Android mobile platform that

uses blocks like the popular Scratch programming platform. It was
first developed at Google Labs by a team led by MIT’s Hal
Abelson and since early 2012 has transitioned to, and been freely
available from MIT's Center for Mobile Learning. Like other
visual graphical programming environments, it is relatively easy
to use and allows early experiences to focus on designing and
creating, while avoiding issues of programming syntax. By
allowing novices to build programs by snapping together
graphical blocks that control the actions of different dynamic
actors on a screen, AIA, like Scratch, quite literally makes
programming a snap. Recently published literature has described
its efficacy in introducing computer science to high school
students and teachers as well as introductory CS courses for
undergraduates [4, 11, 19, 25], especially those with little prior
background in computer programming. Also previously described
are lists of what works and areas of improvement for AIA [19].

Little has been written about AIA for introducing programming
and CS concepts to children in middle school. In our experience,
AIA was an easy-to-use tool that was also excellent in motivating
our 11 to 14 year old participants with little to no prior experience
in programming to not only learn to program but also enjoy their
first real programming experience. Mobile phone apps, and games
in particular, are familiar territory for all tweens and teens today
regardless of gender. In past literature, robotics and video game
creation have been cited as suitable settings for children to learn
computational thinking skills [18]. However, these as not very
democratic in that they appeal more to male interests [6]. Recently
introduced computational kits for creativity like e-Textiles seek to
address this, but end up swinging almost all the way in the other
direction, and appeal largely to girls. With the benefit of first-hand
experience in introducing children to all these “tangible”
computational tools in the past, we find AIA to be the most
gender neutral and truly “democratic” among them all. Recent
efforts to engage girls in computing, especially since stark
enrollment numbers were published five years ago [13], as well as
recommendations for engaging girls through “computing in
context” [2, 8], provide a compelling rationale for the use of a tool
such as this.

AIA helped us meet the primary goal of the workshop – that of
providing a friendly platform that would allow novice middle
school programmers to create exciting and fun apps. The thrill of
hearing the first “meow” upon tapping the image on the screen
was evident in the squeals, multiple utterances of “this is so cool”
from around the table, as well as repetitive animal sounds as well
as text-to-speech audio that filled the morning session as students
repeatedly and excitedly tapped the screen or shook the phone.
The complexity of the computational constructs that was
demonstrated in the final projects by the end of the day was
evidence of the completeness of the AIA feature set as a tool to
expose novices to most all of the foundational elements of CS and
CT that introductory computing curricula strive to cover.

Lastly, and perhaps most importantly (given the pedagogy
employed in this curriculum), was the AIA’s ability to foster
natural engagement with the mechanics of programming and
computational thinking through discussions and questions. Past
studies on the language and structure that children and adults
naturally use in solving problems before they have been exposed
to programming show that “an event-based or rule-based
structure” was often used, where actions were taken in response to
events. “When PacMan loses all his lives, it’s game over” would

726

be an example of how people would generally describe their
thinking process [12]. AIA’s event-driven architecture for creating
apps that responds to user or system-generated events was thus in
keeping with the way novices approach problem-solving through
programming; and was conducive for fostering organic
discussions of how an app would be designed to achieve a desired
result in response to user actions. Additionally, the complexity of
event-driven programs the students were able to create with AIA
in the course of a one day workshop went far beyond the limited
“if-sensor-then-start/stop-motor (or LED)” type of programming
that typically dominates the ‘low floor’, but not necessarily ‘high
ceiling’ computational experiences in robotics and e-Textiles [3].

5. CONCLUSIONS
Despite the vast body of research on children and programming in
the 1980s and the increased attention being given to computing
education in K-12 today, educators are yet to establish the best
pedagogies for introducing children to programming and
computational concepts. It is thus worthwhile to bring research in
the learning sciences to bear on the design of computing education
curricula for younger children, and explore the value of the
“social” aspect of the environment in the learning experience.
This paper describes how talk, specifically, when used
consciously and productively in an introductory CS curriculum for
young learners can shape the process of development of CT.
While data from other sources captured during this workshop
needs to be analyzed to more closely investigate the impact of
discourse on the development of specific elements of
computational thinking, preliminary evidence from this
exploratory study on the role of “computational discourse” for
developing these competencies is very encouraging, and merits
deeper inquiry as well as more widespread usage in curricula,
especially for younger learners of CS and programming. Also, this
opens the door to other possibilities in learning contexts as well.
Through examining talk and interactions, targets of student
difficulty could also be identified along with discursive strategies
to deal with them.

Capturing teachable moments and facilitating additional learning
for children is not a unique pedagogical practice; this approach is
in fact fairly standard in good teaching for a variety of subjects.
However, anecdotal evidence as well as a review of academic
literature suggests that it is not usually employed in introductory
programming or CS classrooms in K-12 (or even at the
undergraduate level). Evidence from this workshop suggests that
computationally rich environments may be consciously designed
for computational discourse to help children develop a
vocabulary that is faithful to CS as a discipline, as well as an
understanding of the fundamentals of programming and
computational thinking concepts and skills in a structured social
setting inside or outside the traditional classroom.

As far as tools for computational thinking are concerned, App
Inventor for Android appears to be emerging as a strong
candidate-programming environment for use with early learners,
especially those in the tween/teen age group. It stacks up well
against current popular choices such as Scratch and Alice, and in
some aspects appears to be an improvement on them by allowing
for creative app building—something all teens, including girls, are
eager and motivated to do—while still engaging with complex CT
concepts including procedural and data abstraction, iterative and
recursive thinking, structured task breakdown, conditional and
logical thinking, and debugging.

To summarize, while this experience report is limited by a small
sample size, and as such its findings are not generalizable, it is
illustrative and provides a foundation—and direction—for much
needed further work in the area of studying the development of
computational competencies in school-age children including
pedagogies and tools that support such efforts and appropriate
curricula to achieve that goal.

6. ACKNOWLEDGMENTS
Our thanks to Prof. David Wolber at University of San Francisco
for use of USF’s HTC Android phones for this workshop, Prof.
Paulo Blikstein for the use of the Transformative Learning
Technologies Lab at the Stanford School of Education for
conducting the workshop, audio/video recording equipment and
laptops for the workshop participants. Thanks to the National
Science Foundation (NSF) support of the LIFE Center (NSF-
0835854) contributing to this work. Thanks also to the Stanford
University School of Education for lending laptops for the
workshop as well as providing funding for software, refreshments
and honorariums for workshop volunteers.

7. REFERENCES
[1] Cazden, C.B. 2001. Classroom discourse: The language of

teaching and learning (2nd ed.). Portsmouth, NH:
Heinemann.

[2] Cooper, S., and Cunningham, S. 2010. Teaching computer
science in context. ACM Inroads. 1,1, 5–8.

[3] Eisenberg, M., Elumeze, N., MacFerrin, M., and Buechley,
L. 2009. Children's programming, reconsidered: settings,
stuff, and surfaces. In Proceedings of the 8th International
Conference on Interaction Design and Children, Como, Italy.

[4] Gray, J., Abelson, A., Wolber, D., and Friend, M. 2012.
Teaching CS principles with app inventor. In Proceedings of
the 50th Annual Southeast Regional Conference (ACM-SE
'12). ACM, New York, NY, USA, 405-406

[5] Grover, S., and Pea, R. 2013. Computational Thinking in K–
12: A Review of the State of the Field. Educational
Researcher. To be published.

[6] Kafai, Y.B., Peppler, K.A., Burke, Q., Moore, M., and
Glosson, D. 2010. Fröbel�s Forgotten Gift: Textile
Construction Kits as Pathways into Play, Design and
Computation. In Proceedings of the 9th International
Conference on Interaction Design and Children. Barcelona,
Spain: ACM, 214‐217.

[7] Kurland, D.M, Pea, R.D., Clement, C., and Mawby, R. 1986.
A study of the development of programming ability and
thinking skills in high school students. Journal of
Educational Computing Research. 2, 429-458.

[8] Margolis, J., & Fisher, A. 2002. Unlocking the clubhouse:
Women in computing. Cambridge, MA: MIT Press.

[9] Michaels, S., Sohmer, R. E., and O’Connor, M. C. 2004.
Classroom discourse. In H. Ammon, N. Dittmar, K.
Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An
international handbook of the science of language and
society (2nd ed., pp. 2351–2366). New York: Walter de
Gruyter.

[10] Michaels, S., O’Connor, C., and Resnick, L. B. 2008.
Deliberative discourse idealized and realized: Accountable

727

talk in the classroom and in civic life. Studies in Philosophy
and Education. 27,4, 283–297.

[11] Morelli, R., de Lanerolle, T., Lake, P., Limardo, N.,
Tamotsu, E., and Uche, C. 2011. Can Android App Inventor
Bring Computational Thinking to K-12? Proc. 42nd ACM
technical symposium on Computer science education
(SIGCSE'11).

[12] Myers, B. A., Pane, J. F. and Ko, A. 2004. Natural
Programming Languages and Environments. Comm. Of the
ACM, (Sept. 2004), 47-52.

[13] NCWIT. National Center for Women & Information
Technology. (2007). NCWIT Scorecard 2007: A report on
the status of women in information technology. Boulder, CO:
National Center for Women & Information Technology.
Retrieved September 15, 2008, from
http://www.ncwit.org/pdf/2007_Scorecard_Web.pdf.

[14] National Research Council. 2011. Committee for the
Workshops on Computational Thinking: Report of a
Workshop of Pedagogical Aspects of Computational
Thinking. Washington, DC: National Academies Press.

[15] National Research Council. 2012. A framework for K-12
science education: Practices, cross-cutting concepts, and
core ideas. Washington DC: National Academy Press.

[16] Papert, S. 1980. Mindstorms: children, computers, and
powerful ideas. New York: Basic Books.

[17] Papert, S. 1991. Situating Constructionism. In S. Papert & I.
Harel (Eds.), Constructionism. Cambridge, MA: MIT Press.

[18] Repenning, A., Webb, D., and Ioannidou, A. 2010. Scalable
game design and the development of a checklist for getting
computational thinking into public schools. In Proceedings
of the 41st ACM technical symposium on Computer science
education (SIGCSE '10), 265–269.

[19] Roy, K. 2012. App inventor for android: report from a
summer camp. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (SIGCSE '12).
ACM, New York, NY, USA, 283-288.

[20] Sohmer, R., Michaels, S., O'Connor, M.C., and Resnick, L.B.
2009. Guided construction of knowledge in the classroom:
The troika of talk, tasks and tools. In B. Schwarz, T. Dreyfus
& R. Hershkowitz (Eds.), Transformation of knowledge
through classroom interaction (pp. 105-129). Abingdon, UK:
Routledge.

[21] Wilson, C., Sudol, L.A., Stephenson, C., and Stehlik, M.
2010. Running on Empty: The Failure to Teach K-12
Computer Science in the Digital Age. New York, NY: The
Association for Computing Machinery and the Computer
Science Teachers Association.

[22] Wing, J. 2006. Computational Thinking. Communications of
the ACM. 49(3), 33-36.

[23] Wing, J. 2011. Research Notebook: Computational
Thinking—What and Why? The Link Magazine, Spring
2011. Carnegie Mellon University, Pittsburgh. Retrieved
September 7, 2012 from
http://link.cs.cmu.edu/article.php?a=600

[24] Wolber, D., Abelson, H., Spertus, E. and Looney, L. 2011.
App inventor: create your own android apps. Sebastopol,
CA: O'Reilly Media.

[25] Wolber, D. 2011. App inventor and real-world motivation. In
Proceedings of the 42nd ACM technical symposium on
Computer science education (SIGCSE '11). ACM, New
York, NY, USA, 601-606.

728

