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ABSTRACT 
In this paper we describe preliminary applications of network 
analysis techniques to eye-tracking data. In a previous study, the 
first author conducted a collaborative learning experiment in 
which subjects had access (or not) to a gaze-awareness tool: their 
task was to learn from neuroscience diagrams in a remote 
collaboration. In the treatment group, they could see the gaze of 
their partner displayed on the screen in real-time. In the control 
group, they could not. Dyads in the treatment group achieved a 
higher quality of collaboration and a higher learning gain. In this 
paper, we describe how network analysis techniques can further 
illuminate these results, and contribute to the development of 
'collaboration sensing'. More specifically, we describe two 
contributions: first, one can use networks to visualize and explore 
eye-tracking data. Second, network metrics can be computed to 
interpret the properties of the graph. We conclude with comments 
on implementing this approach for formal learning environments.  

Categories and Subject Descriptors 
K.3.1 [Computer Uses in Education]: Collaborative Learning 
General Terms 
Algorithms, Experimentation, Human Factors. 
Keywords 
Network Analysis, Eye-tracking, Computer-Supported 
Collaborative Learning, Awareness Tools.  

1. INTRODUCTION 
Nowadays, massive datasets are becoming available for a wide 
range of applications. Education is no exception to this 
phenomenon: cheap sensors can now detect every movement and 
utterance of a student. On the web, Massive Open Online Courses 
(MOOCs) collect every click of users taking classes online. This 
information can provide crucial insights into how learning 
processes unfold in situ or in a remote situation. However, 
researchers often lack the tools to make sense of those giant 
datasets; our contribution is to propose additional ways to explore 
massive log files, such as eye-tracking data. 

2. RELATED LITERATURE 
Our work lies in the intersection between basic network analysis 
and studies of the effects of gaze awareness on collaborative 
learning. While there is literature in both of these areas, there 

appears to be none squarely in the intersection of those two 
domains; as such, we believe the proposed work is novel and 
relevant to generating insights. We discuss the literature from 
related areas in order to justify our proposed work. In this section 
we look briefly at eye-tracking studies on collaborative learning, 
basic network analysis techniques, and at examples employing 
simple network analysis of eye tracking data.  
Previous studies in CSCL (Computer-Supported Collaborative 
Learning) have used eye-trackers to study joint attention in 
collaborative learning situations. For instance, Richardson & Dale 
[8] found that the number of times gazes are aligned between 
individual speaker–listener pairs is correlated with the listeners’ 
accuracy on comprehension questions. Jermann, Nuessli, Mullins 
and Dillenbourg [4] used synchronized eye-trackers to assess how 
programmers collaboratively worked on a segment of code; they 
contrasted a 'good' and a 'bad' dyad, and their results suggest that a 
productive collaboration is associated with high joint visual 
recurrence. In another study, Liu [6] used machine-learning 
techniques to analyze users’ gaze patterns, and was able to predict 
the level of expertise of each subject as fast as one minute into the 
collaboration (96% of accuracy). Finally, Cherubini, Nuessli and 
Dillenbourg [2] designed an algorithm which detected 
misunderstanding in a remote collaboration by using the distance 
between the gaze of the emitter and the receiver. They found that 
if there is more dispersion, the likelihood of misunderstandings is 
increased. In all those studies, however, no data-mining 
techniques were used to uncover more complicated patterns. We 
thus propose to build large networks based on eye-tracking data. 
Our work deals mainly with basic graph property determination, 
since it is an exploratory attempt at building networks on top of 
gaze movements. This includes but is not limited to network size, 
degree distribution, clustering coefficient, and so forth [5]. By 
analyzing these basic attributes of the networks of eye tracking 
data, we lay the foundation for future research, which can control 
for various network properties in order to determine their effect on 
study outcomes. 

We are unaware of existing studies that have tried to apply 
network analysis tools on eye-tracking data We believe that 
analyzing networks based on subjects’ gaze behavior can shed a 
new light on collaborative learning processes. In the next section 
we describe our dataset and describe our work. 

3. THE CURRENT STUDY 
The first author previously conducted an experiment [9] where 
dyads of students remotely worked on a set of contrasting cases 
[1]. The students worked in pairs, each in a different room, both 
looking at the same diagram on their computer screen. Dyads 
were able to communicate through voice. Their goal was to learn 
how the human brain processes visual information (Fig. 2). In one 
condition, members of the dyads saw the gaze of their partner on 
the screen; in a control group, they did not have access to this 
information. This intervention helped students achieve a higher 
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quality of collaboration and a higher learning gain compared to 
the control group. To our knowledge, this is the first study that 
was able to highlight the learning benefits of this kind of “gaze-
awareness” tool.  

Participants in the “visible-gaze” group outperformed the dyads in 
the “no-gaze” condition for the total learning gain: F(1,40) = 7.81, 
p < 0.01. For the sub-dimensions, they also scored higher on the 
transfer questions F(1,40) = 4.47, p < 0.05. With a larger sample, 
the difference is likely to be also significant for the terminology 
questions F(1,40) = 3.59, p = 0.065 and for the conceptual 
questions F(1,40) = 2.11, p = 0.154, since the effect sizes are 
between medium and large (Cohen’s d are 0.62 and 0.5, 
respectively). Additionally, in our previous submission [9] we 
manually categorized each member of the dyad as “leader” and 
“follower”. The leader was chosen to be the member that starts 
more conversations, and leads the dyad's problem-solving 
processes during the experiment. After the collaboration on the 
diagram, all participants then individually completed a short test 
that examined their learning gain about the topic. Their 
performance (number of correct answers) on this test was taken as 
their “total learning score”. Interestingly (see Fig. 1), we found an 
interaction effect between those two factors (experimental 
conditions and individuals’ status) on the total learning score: 
F(1,38) = 5.29, p < 0.05. Followers learned significantly more 
when they could see the gaze of the leader on the screen. We also 
rated the quality of collaboration of each dyad using Meier, Spada 
and Rummel’s [7] rating scheme. Our results show that Dyads in 
the treatment group (“visible gaze”) had a higher quality of 
collaboration: F(1,10) = 24.68, p < 0.001 (mean for the treatment 
group = 7.18, SD = 3.75; mean for the control group = 0.6, SD = 
6.2). More specifically, those dyads were better at sustaining 
mutual understanding (F(1,10) = 21.78, p < 0.01), pooling 
information (F(1,10) = 15.94, p < 0.01), reaching consensus 
(F(1,10) = 31.25, p < 0.001) and managing time (F(1,10) = 27.50, 
p < 0.001).  

The eye-tracking data of this study, however, has been largely 
unexploited so far. In the current work, we use network analysis 
techniques to describe how subjects in the “visible-gaze” 
condition outperformed subjects in the “no-gaze” condition.  

 
Figure 1: results of the learning test in the previous study. We 
found that students using the gaze-awareness tool 
outperformed the students who did not have access to it on the 
learning test. ”Follower” in particular benefited from this 
intervention. 
 

4. CONSTRUCTING GRAPHS WITH EYE-
TRACKING DATA 

4.1 Goals 
Our goal is twofold: first, we want to provide an alternative way 
to explore eye-tracking data. This approach involves data 
visualization techniques, such as force-directed graphs. We 
believe that uses of visualization techniques for representing 
massive datasets can provide interesting insights to researchers. 
Second, we want to compute network measures based on those 
graphs; our goal is to examine whether some metrics are 
statistically different across our two experimental groups. 
Additionally, those metrics can provide interesting proxies for 
estimating dyads’ quality of collaboration. 

4.2 Deriving Nodes and Edges from Gaze 
Movements 
Nodes can be created in various ways from this dataset. One 
choice would be to convert every pixel on the screen to a node. 
For obvious performance reasons, and to make computations 
more meaningful, nodes should contain an area larger than a pixel. 
A better choice would be dividing the screen into a uniform grid 
of nodes. Other methods involve building/detecting nodes 
empirically. For example, it is possible to sum the total gaze time 
for each pixel (by all dyads), and then cluster those pixels into 
nodes by the Mean-Shift algorithm. To limit the scope of this 
paper we limit ourselves to the first approach. For all the 
subsequent analyses, we divided the screen into 44 different areas 
based on the configuration of the diagrams (Fig. 2). Students had 
to analyze 5 contrasting cases; the answer to the top left and top 
right cases were given. Possible answers were given on the right. 
Thus, we have 30 areas that cover the diagrams of the human 
brain and 8 areas that cover the answer keys.  

Edges can represent many aspects of the subject’s behavior. For 
example, one can do path analysis and convert a dyad’s gaze into 
a “path” on the nodes. Here, it is possible to analyze the steps in 
the gaze processes that dyads went through (e.g., by counting 
common sub-paths), how fast they switch between nodes, and the 
average number of times that they visit a node.  

In one analysis, we constructed undirected weighted graphs, 
where a time-sliding window (e.g., of 2 seconds width) detects 
when a given dyad gazes at two screen areas within that time-
frame. Then one can increment the edge weight by a certain 
quantity. Unlike the path analysis, this undirected graph has no 
notion of chronology because the temporal relationship between 
nodes is expressed as edge weights. 

 
Figure 2: To create the nodes, we choose to divide the screen 
in 44 different areas based on its visual configuration. 
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For our first attempt, we focused on the simplest solution: each 
time a participant gazed between two regions, we created (or 
incremented the weight of) an edge. Future work should explore 
alternative ways of creating both nodes and edges based on eye-
tracking data. However this simple method generates quite 
interesting results, described in the following section. 

4.3 At the Individual Level 
In this section we describe graphs created with individuals as the 
unit of analysis: each network is built by using the eye-tracking 
data of one subject (Fig. 3). The label on each node corresponds to 
a screen region as defined in Fig 2. The size of a node shows the 
number of fixations on this area. Node colors correspond to screen 
section. Blue nodes correspond to a diagram region (major/left 
side of the screen). Orange nodes correspond to answer keys 
(right column of the screen). An edge represents a saccade 
between two regions. The width of an edge shows the number of 
times a subject compared those two regions. Those graphs were 
implemented with a force-directed layout and can be directly 
manipulated on a web page1. 
This approach already shows interesting results: we can observe 
that subject 1 (on the top) spent a lot of time understanding the 
diagram on the top right corner of the screen; however (s)he 
mostly neglected the answers on the right. Subject 2 (on the 
bottom), had a completely different strategy: (s)he intensively 
compared answers and diagrams. Thus, with this visualization one 
can quickly identify patterns and build hypotheses to investigate.  

One limitation of this approach is known as the “hair ball” 
problem in data visualization: since the graph is quite dense, every 
node is connected to a lot of other nodes and thus makes 
interpretations difficult. This problem is inherent to eye-tracking 
dataset: since an edge is a saccade, each node is going to be 
connected to at least two other nodes. Moreover, due to the 
limited amount of potential nodes, our graphs are bound to be 
highly connected and highly clustered. Another limitation is the 
fact that this visualization totally ignores the collaborative aspect 
of the study [9]. In previous results, dyadic synchronization was 
found to be a critical factor for a positive learning experience.  

In the next section, we describe how we circumvented those 
issues. We sought to create smaller and more informative graphs 
by focusing on dyads instead of individuals. Those graphs provide 
a different window into our dataset. 

4.4 At the Dyad Level (Joint Attention) 
Our next attempt involved building one graph for each dyad. 
Here, we want to capture the moments in which dyad members 
were cooperating. The nodes correspond to the screen areas, as 
previously defined. At the dyad level, however, a node will only 
appear in the dyad graph if both dyad members gazed at the 
respective screen area within a 2 seconds time-window of each 
other.  
Small graphs with few nodes are characteristic of poor 
collaboration, and large graphs with highly connected nodes show 
a strong flow of communication across members of the dyad. 
Figure 4 provides an example of this kind of contrast.  
 

                                                                    
1 The visualizations described in this paper can be accessed via 

stanford.edu/~schneibe/cgi-bin/d3/examples/force/force.php 

 

 
Figure 3: Two graphs created based on individuals' data. Blue 
means brain diagram, orange means answer key on the right 
of the screen. Both graph suffer from the “hair ball” problem 
since they contain a lot of edges. 
The color scheme of the nodes is identical to the individual 
graphs. However, the node size in the dyad graphs is proportional 
to the number of times dyad members looked at the respective 
screen area within a 2 second time window. The choice of “2 
seconds” is based on the work done by Richardson & Dale [8], 
where they find that it takes a follower about 2 seconds to look at 
the screen area that the leader is discussing. Edges are defined as 
previously (i.e., number of saccades between two areas of the 
screen). 
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Figure 4: Graph build on dyads' data. The size of each node 
reflects the number of moments of joint attention members of 
the group shared on one area of the screen. Graph on the top 
is from a dyad in the “no-gaze” condition; graph on the 
bottom is from a dyad in the “visible-gaze” condition. 
Again, from a data visualization perspective, this approach 
conveys key patterns in collaborative learning situations. The top 
graph in Fig. 4 shows a dyad in the “no-gaze” condition; one can 
immediately see that students did not share a common attentional 
focus very often. Nodes are small and poorly connected. The 
graph on the bottom represents a dyad in the “visible-gaze” 
condition and is a strong contrast to the previous example: here 
students are looking at common things much more frequently and 
those moments of joint attention provide opportunities to compare 
different diagrams or answers. Nodes are bigger and better 
connected. 

Based on this new dataset, we computed various network metrics. 
We found that the average size of the nodes was significantly 
bigger in the “visible-gaze” condition: F(1,12) = 7.19, p = 0.02 and 
there were more edges: F(1,12) = 4.9, p = 0.047. As expected, the 
average betweenness centrality (a measure of a 
node's centrality in a network, computed by counting the number 
of shortest paths from all vertices to all others that pass through 

that node) was also higher for this group: F(1,12) = 6.44, p = 
0.026. Those results indicate that we can potentially separate our 
two experimental conditions solely based on network 
characteristics. 

More interestingly, several measures were significantly correlated 
with the groups’ quality of collaboration (as defined by the rating 
scheme described in the methods’ section [7]). The average size of 
a node was correlated with the overall quality of collaboration 
(r(16) = .52, p = 0.039), students’ orientation toward the task 
(“each participant actively engages in finding a good solution to 
the problem”): r(16) = .54, p < 0.001, and students’ reciprocal 
interaction (“partners treat each other with respect and encourage 
one another to contribute their opinions and perspectives”): r(16) 
= 59, p < 0.001. The number of the nodes in the graph was 
correlated with the sub-dimension “Reaching Consensus” 
(“Decisions for alternatives on the way to a final solution (i.e., 
parts of the diagnosis) stand at the end of a critical discussion in 
which partners have collected and evaluated”): r(16) = .65, p < 
0.001 and the sub-dimension “Information pooling (“Partners try 
to gather as many solution-relevant pieces of information as 
possible”): r(16) = .52, p = 0.002. Betweenness centrality was 
correlated with all the sub-dimensions above - but also with the 
sub-dimension “Sustaining Mutual Understanding” (“Speakers 
make their contributions understandable for their collaboration 
partner, e.g., by avoiding or explaining technical terms from their 
domain of expertise”): r(16) = .37, p = 0.037.  

5. DISCUSSION 
Our preliminary results show the relevance of using network 
analysis techniques for eye-tracking data. In particular, we found 
this approach fruitful when applied to social eye-tracking data 
(i.e., a collaborative task where the gaze of two or more 
participants are recorded at the same time). 

More specifically, we found that different aspects of collaborative 
learning were associated with different network measures. The 
average size of a graph’s nodes appeared to be a good proxy for 
students’ orientation toward the task and their level of reciprocity 
toward their partner; the number of nodes can be used to estimate 
to what extent dyads try to reach a consensus and pool 
information to find a good solution to the problem at hand. 
Finally, the betweenness centrality of a graph appears to be an 
indicator of how well students try to sustain mutual understanding 
between one another. Of course, more work is needed to replicate 
those results. But overall, we find that network analysis 
techniques can be used advantageously to further our 
understanding of group collaboration processes. 

In terms of future work, we are currently exploring several aspects 
of the research described above. The most direct extension is to 
apply machine-learning techniques to predict dyads’ quality of 
collaboration using network metrics. Early results make us believe 
that networks’ characteristics can be used as relatively good input 
features for a Support Vector Machine (SVM) algorithm. Another 
interesting line of work is to explore the way graphs evolve over 
time: for instance, we would expect the betweenness centrality to 
increase as the team develop a higher mutual understanding an 
agreement over the time. Finally, more work is needed to interpret 
the meaning of the correlations described above: for instance, it is 
not entirely clear why betweenness centrality is strongly 
associated with developing mutual understanding in the group. At 
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this stage it is probably necessary to conduct a more fined-grained 
analysis of those results, for instance by focusing on one 
particular group and defining key events associated with a higher 
betweenness centrality (e.g. students jointly revisiting a particular 
node, and making connections with hypotheses previously 
developed during the activity).   

Our work has limitations. First, we studied only one particular 
kind of collaboration (i.e., remote collaboration). It is likely that in 
situ interactions are different from online collaborative work. 
Secondly, we only had 9 dyads in each experimental group; with 
more subjects we would probably find more statistically 
significant patterns. Thirdly, it is possible that the two 
experimental conditions are interfering with our results: 
collaboration traits may be exacerbated by our gaze-awareness 
tool and thus not reflect natural patterns of social interaction. 
Finally, there are other interesting network metrics that we did not 
use for this preliminary analysis. Future work shoulde replicate 
those results in other settings and look at more complex properties 
of graphs. 

6. CONCLUSION 
This work provides two significant contributions. First, we 
developed new visualizations to explore social eye-tracking data. 
We believe that researchers can take advantage of this approach to 
discover new patterns in existing datasets. Second, we showed 
that simple network metrics can serve as proxies for evaluating 
the quality of group collaboration. As eye-trackers become 
cheaper and widely available, we can develop automatic measures 
for assessing people’s collaboration. Such instrumentation would 
enable researchers to spend less time coding videos and more time 
exploring patterns in their data. In formal learning environments, 
such measures could be computed in real time; teachers could 
employ such metrics of 'collaboration sensing' to target specific 
interventions while students are at work on a task. In informal 
networked learning, collaboration sensor metrics could trigger 
hints or provide other scaffolds for guiding collaborators to more 
productive coordination of their attention and action. We also 
envision the extension of such network analyses as these for eye-
tracking during collaboration to other interaction data related to 
interpersonal coordination and learning, such as gestures and 
bodily orientation. 
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