
Expansive Framing and Preparation for Future Learning
in Middle-School Computer Science

Shuchi Grover and Roy Pea, Graduate School of Education, Stanford University, Stanford, CA

Stephen Cooper, Computer Science Department, Stanford University, Stanford, CA
Email: shuchig@stanford.edu, roypea@stanford.edu, coopers@stanford.edu

Abstract: Educators aspire to transfer of learning as a goal of their teaching. Expansive
Framing and Preparation for Future Learning (PFL) are new perspectives on how to foster and
assess transfer. As computing education makes its way into K-12 schools, efforts are
underway to introduce children to programming in block-based environments like Scratch and
Alice. This paper reports on a design-based research in progress that employs ideas of
Expansive Framing and PFL to pedagogy and assessments in a middle school introductory CS
curriculum that uses Scratch, and includes designed measures for evaluating how well it
prepares students for success in future computing experiences with text-based programming.

Introduction
Computational Thinking (Wing, 2006), now widely recognized as a necessary skill for today’s generation of
learners, is increasingly being introduced in middle and early high school via programming in block-based
introductory environments such as Scratch, Alice, and MIT App Inventor, among others (Grover & Pea, 2013).
Ideally, educators would like these first experiences to be framed in such a way that learners can transfer their
learning successfully to future computational experiences, which are likely to be in the context of higher-order,
text-based programming languages. However, mediating transfer of learning from one context to another or
even from one grade to the next is known to be difficult in STEM domains including programming (Kurland,
Pea, Clement, & Mawby, 1986; Pea, 1987).

In designing and evaluating a 6-week introductory CS curriculum for middle school, we were guided
by both work on “expansive framing” as a pedagogy to promote transfer and the Preparation for Future
Learning (PFL) approach to assessing transfer. Expansive framing and PFL have yet to be investigated in the
context of curricular interventions in CS Education. This paper describes our investigations around introductory
CS instruction designed to nurture deep learning and expansive framing of CS constructs rather than focusing
solely on the shallow surface features of the block-based programming environment, with the rationale that such
an approach will prepare students for better success in future computational experiences, especially with text-
based programming languages. The research effort includes the design and use of “dynamic” PFL assessments
to assess how well students can apply their understanding of computing constructs learned in the context of
Scratch to algorithmic solutions expressed in a more advanced text-based programming language.

Research Framework: Mediating Transfer and Preparation for Future Learning (PFL)
Transfer and PFL are embodied in notions of deeper learning, a topic at the center of a recent National
Academy of Sciences synthesis report on developing transferable knowledge and skills for 21st century life and
work (Pellegrino & Hilton, 2012). The need for classroom learning to be transferrable so it can be applied in
practice and contexts outside of school is in keeping with the idea of ‘learning and becoming in practice’, the
theme for the 11th International Conference of the Learning Sciences, 2014. The seminal literature on how
people learn points to several critical features of teaching and learning that affect people’s ability to transfer and
suggests ways to facilitate transfer (Bransford, Brown & Cocking, 2000). While there is no single prescribed
strategy for fostering learning for transfer, suggested instructional strategies aim to help students assemble new
mental platforms for subsequent learning. As Engle et al. (2012) note, expansive framing fosters an expectation
that students will continue to use what they learn later, create links between learning and transfer contexts so
that prior learning is viewed as relevant during potential transfer contexts; and encourage learners to draw on
their prior knowledge during learning, which may involve them transferring in additional examples and making
generalizations. Educational psychologists also argue, “learners who compare cases will develop a more general
problem-solving schema that primarily captures the common structure of the cases rather than the surface
elements” (Gentner, Loewenstein, & Thompson, 2003). Consequently, in contrast to cases studied individually,
analogous representations compared as part of a more expansive framing should be more easily retrieved when
the learner encounters a new case with a similar structure.

The preponderance of studies in education literature however suggests that appropriate transfer comes
with difficulty (Pea, 1987). Bransford and Schwartz (1999) also critique traditional tests of transfer for
predominantly testing direct application of one's previous learning to a new setting or problem with no
opportunities for learners to demonstrate their abilities to learn to solve new problems. To this end, they call for
broadening previous conceptions of transfer by including an emphasis on people's "preparation for future

ICLS 2014 Proceedings 992 © ISLS

learning" (PFL) where the focus shifts to assessments of people's abilities to learn from new resources. The PFL
perspective suggests that assessments of people's competencies can be improved by involving assessments that
provide opportunities for new learning. Such “dynamic assessments” (Campione & Brown, 1990; Schwartz &
Martin, 2004; Schwartz, Bransford & Sears, 2005) measure how well students “transfer in” skills to apply to
their new learning rather than simply testing how well they “transfer out” of situations to solve problems.

Few studies in the realm of computing education have attended to transfer of learning from visual
block-based environments to text-based ones. Dann et al. (2012) mediated transfer of learning from a special
version of the Alice visual environment to the text-based Java environment. They contend that by using the
exact same example in Alice and Java, their students succeeded with better learning results. More recently,
Touretzky et al. (2013) used the idea of presenting contrasting cases and analogous representations of the use of
the same computing constructs in a one-week summer camp that had 11 to 17-year-old children transition from
Kodu to Alice to Robotics NXT-G in a structured way. By scaffolding instruction to help children see analogies
between formalisms in each language, they sought to foster deeper conceptual understanding. For example, their
strategies attempted to help children appreciate that “WHEN/DO in Kodu, If/Then in Alice, and SWITCH
blocks in NXT-G all function as conditional expressions, even though they look different”.

Building on this earlier research, we argue that in computing education, successfully mediating transfer
will depend on expansively framed development of deeper conceptual understanding of computational thinking
elements that children experience in their introductory computational learning. These include the ability to
decompose problems and compose solutions, to understand fundamental notions of flow of algorithmic control
that are broadly applicable, and to build practices with an academic vocabulary of the domain that will help
students not only communicate computational ideas effectively but also aid in future programming experiences.
Additionally, we contend that a concern for transfer of computational thinking experiences will be advanced
using PFL assessments that measure readiness to work with more advanced programming environments.
Successful PFL would require that students develop not only strong algorithmic thinking skills but also an
understanding of the underlying structures of programs beyond the syntax and surface features of the
environment in which children are initially learning programming to more expansive frames in which
similarities in deep structures across programming environments are anticipated, recognized and productively
used. Unlike earlier research that has attempted this by employing different programming languages to help
students abstract deeper features of constructs, our work is distinct in that we apply these ideas while using a
single programming environment (Scratch), by employing the strategies described below.

The remainder of the paper describes the features of an introductory CS “mini-course” inspired by the
transfer of learning rationale above, and the empirical investigations for studying students’ PFL as a result of
this curricular intervention in a public middle school classroom.

Methods
This section describes the design-based research around a six-week middle school curriculum titled
‘Foundations for Advancing Computational Thinking’ (FACT) designed to promote deeper engagement with
foundational CT concepts and assess students through tests of direct application of skills as well as dynamic
PFL assessments. The research question guiding this effort is: Does the FACT curriculum promote an
understanding of algorithmic concepts that goes deeper than tool-related syntax details, as measured by
Preparation for Future Learning (PFL) assessments?

Curriculum Design
Our curriculum focused on core CS concepts that would universally be identified as foundational to any
computing experience for middle school. These include structured problem decomposition, and algorithmic
notions of flow of control including conditional selection and repetition. The programming unit of the Exploring
CS curriculum for high school (http://www.exploringcs.org/) inspired the curriculum and use of Scratch.

Instructional Approaches for Promoting Transfer and Deeper Learning
Our approach to teaching for transfer relies on using expansive framing and analogous representations of
algorithmic solutions to help learners perceive these in forms more expansive than the constraints of a specific
syntactical structure. We predict that guiding students to draw analogies between different formalisms will
foster deep and abstract understanding of fundamental concepts of computational thinking.

To this end, the curriculum introduced new computational concepts through a “problem” example that
required the use of the concept, demonstrations in Scratch, and an explanation of the concept using new
computing vocabulary. Additional examples using English & pseudo code were used to describe algorithms
involving the use of the concept so that students could see the concept being employed in algorithmic solutions
that were represented in ways distinct from Scratch, thus setting them up for a more expansive framing of their
learning than learning to program in Scratch alone. Short formative assessments included exercises and quizzes

ICLS 2014 Proceedings 993 © ISLS

involving pseudo code and short programming exercises in Scratch, and an end-of-unit activity involving use of
the concept in the context of a more substantial programming task (in Scratch).

We used pseudo-code not only to describe and deliberately lay out the sequence involved in organizing
the algorithmic steps to accomplish a goal (which has its own benefits), but also to introduce students to
analogical terms and representations of algorithmic solutions distinct from the Scratch environment. Our
reasoning was that this design would bolster familiarity with textual representations of programs, and analogous
terms and description of loops and conditional structures that were different from Scratch. For instance, Scratch
has only “REPEAT” and “REPEAT UNTIL” blocks for bounded and unbounded iteration. However, using
terms like “WHILE” or “FOR” in pseudo-code aim to help students recognize that different terms can be used to
describe the idea of repetition of steps (even though there are subtle differences in the ways in which these
constructs operate in different programming languages). This approach was taken throughout the course
accompanied by suggesting relevance of these terms and ideas in programming experiences in text-based
languages such as Java and Python, e.g. “Even though a loop in other languages like Java or Python will be
expressed with terms like While or For, they help to accomplish the same things in an algorithmic process like
the Repeat Until loop does in your Scratch program that finds the average test score for a class.” At various
points in each unit, students were also given an opportunity to examine the same algorithm put together in Java
or some other language, so even though they were not being taught Java, the analogical instances helped
students see the deeper structure of the program, for example, the rather simple “SAY” command in Scratch
accomplishes the same goal as the more convoluted “system.out.print”. Space constraints preclude inclusion of
figures to demonstrate these analogous snippets of code shown to the students.

Dynamic Assessments for Assessing PFL
The curriculum design included the design of dynamic assessments for assessing PFL that attempt to measure
how well students “transferred in” their conceptual understanding of computing constructs to learn from a new
resource and apply it to understand code presented in a text-based language. The questions are described along
with their goals and student results in the Results & Discussion section below.

The problems were thus preceded by “new learning” in the form of descriptions of how the syntax for
the fictitious (Pascal/Java-like) text-based language worked. Two different types of syntax were explained,
followed by questions each involving programs coded using the new syntax. For example, the following
explanation formed part of the new (Pascal-like) syntax description that preceded Questions 1 and 2.

'<--' (left arrow) is used to assign values to variables. For example: n <-- 5 assigns the value 5 to the variable n
 If there are blocks of compound statements (or steps), then the BEGIN..END construct is used to delimit (or hold together)
those statement blocks (like the yellow blocks for REPEAT and IF blocks in Scratch).
 FOR and WHILE are loop constructs like REPEAT & REPEAT UNTIL

WHILE (some condition is true)
BEGIN
... (Execute some commands)
END

Figure 1. Sample new syntax specification preceding questions in “dynamic” PFL assessment

In order for students to tackle Questions #3, #4 and #5, they had to use a Java-like syntax preceding the

questions that were explained in a similar fashion to the prior Questions 1 and 2.

Study and Data Measures
The curriculum was taught for six weeks in April-May, 2013 in a public school classroom of 25 children from
7th and 8th grade (20 boys and 5 girls, mean age: ~13 years) enrolled in a semester-long Computers elective. As
an elective class, students were self-selected. This accounted for the low numbers of female students. The class
met for 55 minutes each day four times per week. The lead researcher on this effort was also the curriculum
developer and teacher for the pilot 6-week FACT course. The regular Computers teacher was present in the
class at all times.

Data Measures
Beyond a survey to assess prior programming experience, the following data were gathered for assessing
students’ learning through the FACT curriculum:
• Measures of computational learning: Students were given pre-post tests that measured their understanding

of computational concepts especially in the context of Scratch. Questions were borrowed from prior work
involving middle school kids and Scratch (Ericson & McKlin, 2012; Zur Bargury, Pârv & Lanzberg, 2013).

• Preparation for Future Learning Test: The post-test included a section pertaining to testing for PFL using
the five questions as described in the table below. A researcher unrelated to the project graded the test.

ICLS 2014 Proceedings 994 © ISLS

Results and Discussion
The results on two out of the five PFL questions are described in the table below that describes the grading
procedure as well. In Question #1, 8 out of the 25 respondents misunderstood the question and explained the
code instead. Question #2 has been excluded from the table. It used a FOR loop, which has been found to be
problematic for novice programmers (Robins, Rountree & Rountree, 2003). Not surprisingly, less than 50% of
the students could tackle that question correctly. Question #3 met with the most success. 84% of the respondents
got it completely correct or close to correct. Questions #4 & #5 were based on the same snippet of code that was
very similar to #3 but with the added complexity of checking for divisibility by 2 and then incrementing one or
the other counter variable. The answers were coded with one of 4 scores (3, 2, 1 or 0) as in Question #3. The
wording of Question #5 also seemed to have caused some confusion, with some students giving the number of
variables that the code used rather than how many numbers are processed by the loop. In both Questions #4 and
#5, roughly 65% of the students got the answer correct or mostly correct.

Table 1: Sample PFL questions, their goals, and results describing student responses

PFL Assessment Question Goal of Question & Results
#1: When the code below is executed, what
is displayed on the computer
screen?
PRINT("before loop starts");
num <-- 0;
WHILE (num < 6) DO
BEGIN
 num <-- num + 1;
 PRINT("Loop counter number
", num);
END
PRINT("after loop ends");

Goal: To test whether students were able to transfer in ideas of (a) sequence and what
comes before and after the loop in addition to the things that happen within the loop,
(b) looping (using a WHILE loop here), (c) how variable values change with each
iteration of the loop, and (d) understanding the loop terminating condition.
Results: 32% of respondents misunderstood the question (and explained the code
instead).
71% of those who followed the required format of the response (i.e., 68% of the total)
got it correct while 19% were off by 1 (num went up to 5 rather than 6).
71% of the total number of students paid attention to the Print commands before and
after the loop.

Goal: To test whether students could make sense of (a) a FOR loop and (b) how the
variables num and i changed with each loop iteration. The results are shown below
(the column to the right indicates number of students)

Correct (3 points)
Example:” It is asking for 100 user inputs. If the input is 0, then it changes
FirstCounter by 1. If it is something else, then it changes SecondCounter by 1.”

19

Mostly Correct (2 points)
”it keeps track of 0s for 100 responses.”

2

Mostly Wrong (1 point)
Example:	
 variable total set to 0 / variable First set to 0 / variable second set to
0 / repeat total till total <100 / / input variable num / if num is equal to 0 / set
first counter else second”

1

#3: Describe in plain English what
this piece of code is doing. What
are FirstCounter &
SecondCounter keeping track of?
int TotalCount = 0; int FirstCounter
= 0; int SecondCounter = 0;

while (TotalCount < 100) {
 int num;
 num = InputFromUser();
 if (num == 0)
 {

FirstCounter++;
 }
 else
 {

SecondCounter++;
 }
 TotalCount++;
}

Wrong (0)
Example:”The code is asking for numbers that are less than 100. The two
numbers.”

3

We found the results to be largely encouraging. It is worth noting that: (1) In most cases, students were able to
correctly get a sense for the program flow and at a fundamental level understood the concept of looping or
conditional execution in the code, even though their responses were not always completely accurate. (2) The
students whose responses were consistently right or consistently (completely) wrong mapped closely to the best
and worst performers on the Scratch test. This is consistent with earlier literature that contends that skills
mastery in the original context is essential for transfer (Kurland, Pea, Clement, & Mawby, 1986). (3) The nature
of some of the errors committed in the PFL test were similar to those committed on the Scratch test, suggesting
weak initial learning of some concepts. (4) Problems such as the “off-by-1” looping error (Question #5) or
issues with the FOR construct (Question #2) are common among older novice programmers at the
undergraduate level as well. (5) Most of the PFL question involved loops with variable manipulation, a topic
that students found challenging and performed poorly on in the Scratch test as well.

Conclusion and Future Work
As a second iteration of this design-based research, the same curriculum was taught in the same classroom with
a new cohort of students comprising 20 boys and 8 girls (mean age ~12.35 years). The assessments were largely
unchanged from this study. The wording of Questions #1 and #5 was rectified to improve clarity of what was

ICLS 2014 Proceedings 995 © ISLS

being asked. We also added additional PFL assessment questions, and survey questions that elicit student beliefs
of future applicability of their learning from this course. Data from this study are currently being analyzed.

Overall, the results of the PFL test were promising, and in answer to the research questions that guided
this study, we found that students were able to transfer many algorithmic ideas from the 6-week Scratch
curriculum to their new learning, and broadly interpret programs in a text-based language although the
mechanics of some constructs were difficult to grasp. Most students evidenced an inherent understanding of the
algorithmic flow of control even in a completely new programming context.

This paper suggests a successful approach to using the powerful ideas of Expansive Framing and
Preparation for Future Learning (PFL) in introductory CS teaching and learning at the middle school level.
Efforts such as the one described in this paper also provide middle school teachers with curricular and
pedagogical ideas that promote a deeper engagement with computational thinking concepts, even as they use
friendly block-based environments like Scratch. This study also makes an important contribution to the idea of
textual but language-agnostic assessments that can be used as PFL assessments after teaching middle school
students introductory CS using environments like Scratch and Alice. To conclusively establish the merits of this
curricular approach, comparative investigations would be needed with children who are learning programming
in Scratch/Alice using other types of curricula.

References
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications.

In A. Iran-Nejad & P. D. Pearson (Eds.), Review of Research in Education, 24 (pp. 61–101).
Washington, DC: American Educational Research Association.

Bransford, J. D., Brown, A. L, & Cocking, R. R. (Eds.). (2000). How people learn: Mind, brain, experience and
school (expanded edition). Washington, DC: National Academy Press.

Campione, J.C., & Brown, A.L. (1990). Guided learning and transfer: Implications for approaches to
assessment. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of
skill and knowledge acquisition (pp. 141-172). Hillsdale, NJ: Erlbaum

Dann, W. P., et al. (2012). Mediated transfer: Alice 3 to Java. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, 141–146.

Engle, R. A., Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive framing promote transfer?
Several proposed explanations and a research agenda for investigating them. Educational Psychologist,
47(3), 215-231.

Ericson, B., & McKlin, T. (2012). Effective and sustainable computing summer camps. Proceedings of the 43rd
ACM technical symposium on CS Education, 289-294.

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical
encoding. Journal of Educational Psychology, 95(2), 393–408.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a review of the state of the field. Educational
Researcher, 42(1), 38-43.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development of programming
ability and thinking skills in high school students. Journal of Educational Computing Research, 2(4),
429-458.

Pea, R. D. (1987). Socializing the knowledge transfer problem. Int’l Journal of Ed. Research, 11(6), 639-663.
Pellegrino, J. W. & Hilton, M. L. (Eds.). (2012). Education for life and work: Developing transferable

knowledge and skills in the 21st century. Washington, DC: National Academies Press.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: a review and

discussion. Computer Science Education, 13(2), 137-172.
Schwartz, D. L., Bransford, J. D. & Sears, D. (2005). Efficiency and innovation in transfer. In J. Mestre. (Ed.),

Transfer of learning from a modern multidisciplinary perspective (pp. 1-51). Greenwich, CT,
Information Age Publishing.

Schwartz, D. L. & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of
encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129-
184.

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013). Accelerating K-12 computational
thinking using scaffolding, staging, and abstraction. In Proceeding of the 44th ACM technical
symposium on computer science education (pp. 609-614). New York: ACM.

Wing, J. 2006. Computational Thinking. Communications of the ACM. 49(3), 33-36.
Zur Bargury, I., Pârv, B. & Lanzberg, D. (2013). A nationwide exam as a tool for improving a new curriculum.

In Proceedings of ITiCSE'13, 267-272. ACM.

ICLS 2014 Proceedings 996 © ISLS

