
Factors Influencing Computer Science Learning in Middle
School

Shuchi Grover
Center for Technology in Learning

SRI International
Menlo Park, CA 94025

shuchi.grover@sri.com

Roy Pea
Graduate School of Education

Stanford University
Stanford, CA 94305

roypea@stanford.edu

Stephen Cooper
Computer Science Department

Stanford University
Stanford, CA 94305

coopers@stanford.edu

ABSTRACT

In this paper, we describe research conducted around a 7-week
curriculum designed to introduce middle school students to
computer science with a focus on algorithmic thinking and
programming. The pedagogical ideas employed in this curriculum
were drawn from past research. Empirical investigations over two
studies in a public middle school in the US examined changes in
students' understanding of algorithmic constructs and the factors
affecting that learning. Multi-level analyses revealed that students
in both studies (1) achieved substantial learning gains in
algorithmic thinking skills and significant growth towards a more
mature understanding of computing as a discipline, and (2) found
certain CT ideas and constructs more difficult than others. Prior
computing experiences and math and English ability were found
to be predictors of learning outcomes. Extracurricular experiences
with technology also appeared to impact outcomes.

Keywords
Middle School; Deeper Learning; Learning Factors; K-12
Computer Science Education; Computational Thinking.

1. INTRODUCTION
The rationale for introducing computing in K-12 in order to
advance computational thinking (CT) is compelling [10,34,40].
While needs of high school students in the US are being
prioritized through courses such as Exploring Computer Science
(ECS) and AP CS Principles, there is a growing belief that
experiences with computing must start at an earlier age. Middle
school years are formative and key for cognitive and social
development in the K-12 schooling journey especially with regard
to future engagement with STEM fields [35]. Experiences with
computing should therefore make middle school amenable to
diverse future opportunities as part of students' possible selves.

While there has been some growth in structured middle school
computer science (CS) curricula, the development of deeper,
transferable CT skills in a classroom setting is yet to be
empirically validated. The goal of this research was to address this
through designing and empirically studying the use of a structured
curriculum for middle school that leverages pedagogical ideas

from the learning sciences and computing education research
about how children can best develop algorithmic thinking and
programming skills. We adopted an iterative process to design,
refine, and study our introductory middle school CS course—
Foundations for Advancing Computational Thinking (FACT) to
empirically investigate students’ development of CT skills.

This paper focuses on presenting our research around answering
the following research questions—RQ1: What is the variation
across learners in learning of algorithmic flow of control (serial
execution, looping constructs, and conditional logic) through
FACT; RQ2: What factors influence these learning outcomes?
The paper is organized as follows. A survey of relevant related
work presents a backdrop to the research framework and the
rationale of FACT’s curriculum, pedagogy and assessment design.
The research methodology follows including a brief description of
the pedagogical designs used to introduce students to computing
and algorithmic thinking, and the empirical studies. The Results
section provides results in the form of descriptive statistics and
also describes the mixed-methods analyses that were used to
examine what factors, such as prior experiences and learner
backgrounds, explained the variance observed in learning
outcomes. The paper ends with a discussion and synthesis of the
main findings of this research as well as their implications.

2. RELATED WORK
Much of the CT research involving middle school children in the
US has centered on introductory block-based computational tools
such as Scratch, Alice, Agentsheets, Blockly, App Inventor etc.
Engaging activities such as programming games and apps are
used to foster fluency and motivation in computational problem
solving. Tangible computational tools such as robotics kits and e-
textiles (using Lilypad Arduino) have also been used and studied.
Until recently, most of these have occurred in informal settings.

In the formal middle school context, research studies have been
conducted as students engage with CT through game design in
Alice and Agentsheets [4,28]. Some others have aimed to teach
computational thinking in the context of middle school science
[e.g. 32,38]. In Denner et al.’s work, students worked through a
series of self-paced instructional exercises in Alice and then
designed and developed their own games. Students were assessed
using a specially designed assessment [37]. They summarize their
experiences elsewhere by acknowledging that while computer
game programming (CGP) in environments such as Alice have
proved to be “a good strategy to attract underrepresented students
to computing in middle school and to engage them in
programming concepts and systems thinking, CGP does not
automatically result in learning, and without some intention on the
part of the teacher, it will not result in them learning specific
programming concepts.” [4]. Previous studies around children and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '16, March 02-05, 2016, Memphis, TN, USA
 © 2016 ACM. ISBN 978-1-4503-3685-7/16/03…$15.00
 DOI: http://dx.doi.org/10.1145/2839509.2844564

LOGO [19,22,25,26] endorsed the merits of such an approach and
underscored that teachers as well as instruction play a
substantial role in what and how students learn.

In taking an approach focusing on teaching the foundational
concepts of CS through the structured use of Scratch, FACT is
similar to efforts in Israel and the UK [31,41]. Our pilot effort
involved the design and evaluation of a 7-week “mini-course”, to
give students a brief introduction to CS and computational
problem solving in order to raise interest and awareness in CS and
serve as a good foundation for future computing experiences.
More importantly, given its duration, FACT can potentially be
taught as a unit in existing math, science or technology elective
periods. Our work also employs pedagogy for a structured
curriculum that makes the teaching of specific CS concepts and
vocabulary more intentional, with the goal to consciously teach
CS. Since examining students’ programming artifacts alone to
assess learning can be misleading [19,23], we assess young
learners’ understanding of concepts of CS through designed
assessments in addition to artifacts created by students for
evidence of their understanding of computational concepts. This
last aspect distinguishes FACT from other efforts in the US [30].

3. METHODOLOGY
This research effort involved two iterations that examined the use
of FACT in a public middle school classroom setting. The first
iteration was in a traditional face-to-face classroom setting,
whereas the second iteration involved investigations on a blended
model of learning using an online version of FACT designed and
created on Stanford University’s OpenEdX MOOC platform. The
research involved designing the FACT curriculum; engineering a
blended learning experience using an online version of FACT;
and empirically investigating FACT’s use in a classroom to
answer the research question outlined earlier.

3.1 FACT Curriculum
The curriculum (Table 1) was inspired by the 36-week long ECS
high school curriculum [8], and includes topics on algorithmic
problem solving and programming (in Scratch) that the authors
considered foundational and appropriate for middle school
students. These map roughly to Units 1, 2 and 4 of ECS. The
entire curriculum design effort was guided by goals for “deeper
learning” [27], attending to the development of cognitive abilities
in addition to interpersonal and intrapersonal abilities (such as
collaboration and communication).
3.1.1 Features for Fostering Deeper Learning
To target deeper learning of algorithmic problem solving and to
address issues in learning to program that novice programmers
face [6,14,25,29], FACT’s curriculum design leverages available
learning sciences literature. The pedagogy uses a scaffolding and
cognitive apprenticeship [2] approach to model the process of
programming through the use of (worked) examples [16]. This
includes modeling and constructing solutions to computational
problems in a manner that reveals the underlying structure of the
problem, and the process of composing the solution in pseudo-
code or in Scratch. Drawing on past research [9], computing
vocabulary and CT language are used during this scaffolding
process. FACT also consciously engages with students’ narrow
perceptions of CS to help them see computing in a new light by
using publicly-available videos (bit.ly/CS-rocks) exemplifying
computing as a problem-solving discipline with applications in
many real-world creative contexts and disciplines [12].

Table 1. 7-week FACT Course for Middle School
Unit 1 Computing is Everywhere! / What is CS?
Unit 2 What are algorithms & programs? Computational solution

as a precise sequence of instructions.
Unit 3 Iterative/repetitive flow of control in a program: Loops
Unit 4 Representation of Information (Data and variables)
Unit 5 Boolean Logic & Advanced Looping
Unit 6 Selective flow of control: Conditional thinking
 Final Project (student’s own choice; individual or pairs)

FACT emphasizes “learning by doing” [1] for students through a
mix of directed projects and meaningful, open-ended projects in
Scratch including a substantive culminating project that students
were encouraged to do in pairs (Table 2). Frequent low-stakes
multiple-choice formative assessments were designed to ensure
learners stay engaged with the content and learning goals of the
course, and to provide feedback both to the learners and the
teacher. These also include questions inspired by Parson’s puzzles
[24]. FACT aims to foster a deeper understanding of foundational
concepts by providing learners opportunities to work with plain
English, pseudo-code as well as programs coded in Scratch. At
occasional junctures during the course there are opportunities to
examine the same algorithm put together in a language besides
Scratch. Student learning was also assessed through the final
open-ended game design project of choice. FACT’s curriculum
and assessments are detailed in earlier publications [13,14,15].

Table 2. Sample programming projects in Scratch
Programming Assignments Algorithmic ideas
Share a recipe Sequence of instructions
(Scratch) Make a life cycle of choice
to use in a 6th grade science class

Serial execution

(Scratch) Draw a Spirograph from a
polygon of choice

Simple nested loop (also,
creative computing (CC))

(Scratch) Create a simple animation Forever loop
(Scratch) Generic polygon maker Variables; user input
Look inside Scratch code and
explain the text version of code

Algorithms in different
forms

(Scratch) Draw a ‘Squiral’ Loops, variables (& CC)
Open-ended project (in pairs):
Create a game using “Repeat Until”

Loops ending with
Boolean condition

(Scratch) Maze game Event handlers;
Conditionals

(Scratch) Guess my number game Loops, conditionals,
variables, Boolean logic

(Scratch) Final project of choice All CT topics taught

3.2 Study and Data Measures
Empirical studies were conducted in a public middle school
classroom in Northern California. Two iterations (Study1 and
Study2) of research were conducted with two different cohorts in
the same ‘Computers’ elective class that met four days a week for
55 minute periods. The student samples comprised 7th and 8th
grade students (Table 3; ELL=“English Language Learners”). In
Study1, the course was taught face-to-face by the first author.
Study2 was conducted in the same classroom with a new cohort
and used a refined version of FACT (based on learning from
Study1) on OpenEdX for blended learning and comprised a mix
of individual and collaborative activities. The regular classroom
teacher, who did not have a background in CS or programming,
was present in the classroom at all times assisting with classroom
management and also “learning right alongside the students.”

Table 3. Student samples in Study1 & Study2

Study Mean
Age Male Female Grade

7
Grade

8 ELL Special
Ed.

1 12.9 21 5 15 11 4 2
2 12.3 20 8 16 12 3 1

3.2.1 Data Measures
The following constituted the main data measures:

• Prior Experience Survey: Students were given an extensive
survey on prior experiences in technology and computational
activities, especially programming.

• CS Interest & Attitudes Pre-post Survey: Inspired by [7]
• Pre-Post Measures of CT: Students were given pre-post tests

that measured their understanding of computational concepts.
The pretest and posttest used items from prior research
involving middle school CS with Scratch [7] and included 6
out of 9 questions from the Israel National Exam described in
[42]. We did not incorporate the other three questions, as we
did not have details on them prior to our study’s launch.

• Course Experience Survey: to gather feedback from learners
for improvements for future iterations.

• School data: demographic information including age, gender,
and academic placement (English, Math, special needs)

4. ANALYSIS & RESULTS
In order to answer RQ1, pre-post data were first analyzed
separately for each study using descriptive statistics, paired t-tests
and non-parametric tests to study within-subject differences from
pre-to-post test. A comparative analysis was also conducted on the
six questions of the posttest that were employed in the National
CS Exam administered to about 4000 middle school students in
Israel in 2012 [42].

Table 4. Pre- and Posttest Scores (out of 100), Study 1 & 2
 Pretest Posttest
Study Mean (SD) Mean (SD) t-stat p-value

1 36.3 (18.2) 79.4 (17.5) -17.3 <0.001
2 28.1 (21.18) 81.6 (21.0) -15.5 <0.001

Note: Non-parametric Mann-Whitney (Wilcoxon) rank sum test was also
conducted to test the difference between the pretest and posttest, and the
results remained significant.

Table 5. Posttest Scores by CT Topics, Study1 & Study2
 Study 1 Study 2

Mean (SD) Mean (SD) t-stat p

Overall 78.6 (17.1) 81.6 (21.2) -0.6 0.56
By CS Topic

 Serial Execution 97.4 (13.1) 91.1 (20.7) 1.4 0.18
Conditionals 84.5 (19.0) 84.9 (20.5) -0.1 0.94
Loops 74.1 (21.9) 77.2 (26.3) -0.5 0.64
CS Vocabulary 68.2 (17.9) 77.4 (22.2) -1.7 0.10
(Note: t-statistic and p-value refer to the test of difference in the mean
scores for Study1 and Study2)

Relevant learning outcomes pertinent to RQ1 are shown in Tables
4 and 5. On the posttest score, there was no significant difference
between the studies. The pretest scores in the two studies were
also not statistically different. The pre-to-posttest effect size
(Cohen’s d) on the CT test was roughly 2.4 in both studies.
Learners found serial execution to be easiest and loops, especially
those involving variable manipulation, the most difficult to grasp
(Table 5). The comparative analysis with the results from the
Israeli nationwide exam revealed comparable or slightly better
performances by our students (Figure. 1; Question numbers are
the same as in [42]). Some gender differences were observed with

girls performing better than boys, however the small number of
females in the samples precluded drawing deeper conclusions.

Figure 1: Comparison of Student Performance in Study1 &

Study2 vs. 2012 Israel results (on 6 of 9 questions)
To answer RQ2, factor analyses on prior experience variables and
multivariate regressions were conducted to determine which
factors predicted outcome measures of interest (Section 4.1).

4.1 Factors Influencing Learning Outcomes
What factors explain these differences in learning outcomes?
Learning is influenced by several factors, including learners’ prior
experience, interests and attitudes towards the subject being
taught in addition to academic preparation, especially in
foundational subjects such as mathematics and English [36].
While it is acknowledged that mathematics and English levels are
often a function of learners’ SES (socio-economic status),
inclusion of SES variables was outside of the scope of this
research (as was school context since both studies were conducted
in the same school). In order to explain the variability, factor
analyses and multivariate regressions analyses were carried out.

4.1.1 Rationale for combined regression analyses
Factor analyses and regressions were conducted on the
combined sample from the two studies to gain more statistical
power with a larger sample size (N=54). The justification for
combining the data was as follows: Since both studies were
conducted in the same school and classroom, there were several
similarities among the participants and school settings. Students in
both studies came in with similar levels of knowledge of
computing as tested by the pretest (there was no statistical
difference between the studies). The two groups were similar in
their mathematics and English abilities as measured by the STAR
California state test, and the responses on the survey questions
probing interests and attitudes towards CS both before and after
the intervention were not statistically different between groups.
Students’ performances on the posttest were also not statistically
different across the two studies (Table 5).

4.1.2 Factor Analysis on Prior Experience Survey
As a first step towards using multivariate regression analyses to
explain the effects of the several possible independent variables
on the main outcomes of interest, it was necessary to analyze
several item-level responses on relevant questions (Table 6) in the
prior experience survey for underlying patterns via exploratory
factor analytic procedures. Factor analysis is a multivariate
statistical approach commonly used for interpreting self-reporting
questionnaires [39].

Table 6. Prior Experience Survey Items in Factor Analysis
Q5: (Yes/No) "Have you ever written a computer program?"

Q9: (9 items) "How many times have you ever created the
following using some software on the computer?" [List]
Q11: (13 items) "How would you describe your level of
experience with the following computer
applications/equipment?" [List e.g. Scratch/Alice/Tynker]
Q12: (9 items) "How many times do you use a computer to do
each of the following" [List e.g. play online multi-user games]
Note: Q9 measured depth of technology experience on a 4-point Likert
scale– 1=never to 4=more than six times; Q11 measured experience
level on a 5-point Likert scale from 1=“I don’t know what it is” to
5=“I’m an expert and can teach someone how to use it”; Q12 measured
frequency of computational and media creation on a 8-point Likert
scale– 1=Never to 8=Several times a day

Three main “prior experience factors” were found. We titled them
Coder, Media Creator, and Online Consumer as described in
Table 7. Pearson’s correlation tests between the three factors
indicated the correlation coefficient was less than 0.1 suggesting
that these were 3 distinct types of students in the study sample.
Pearson correlations also suggested that math ability levels (as
measured by STAR scores) were significantly negatively
correlated only to Online Consumer, and positively correlated
with Coder and Media Creator. The implications of these
correlational findings are discussed further in Section 5.

Table 7. Descriptions of Prior Experience Factor Variables
Prior Exp
(PE) Factor Description

PE Factor
1: Coder

Strong on programming experience. Especially
strong components of factor 1 are a positive
response on “have you ever programmed
before?” and experience with coding languages.

Factor 2:
Media
Creator

Little to no coding experience but strong
association with digital media creation activities
such as creating digital movies, music, audio.

Factor 3:
Online
Consumer

Little to no experience with computer
programming or creating digital media, however
strong associations with playing computer &
multi-user online games, watching movie videos.

4.1.3 Multivariate Regressions
Based on prior research [36], it was ascertained that the following
variables could influence learning outcomes in FACT:
• Prior knowledge of computational constructs.
• Technology fluency and prior experience with computation.
• Interest in and attitudes towards CS.
• Academic preparation (as measured here by mathematics and

English levels in STAR California State tests).
• Learning issues (English Language Learner, or ELL).
• Demographics (age and gender).
Some variables were dropped early on as they were not found to
be significant predictors of outcomes of interest in either uni-
variate or multivariate regressions with any combination of
predictor variables. Age was one such variable. The stepwise
regressions used to determine the best model thus included:

1. Mean of the CS attitudes survey items.
2. Mean of the ‘future interest in CS’ survey item calculated for

each student.
3. Prior experience factors (the three factors identified above).
4. Most recent Math STAR test score.

5. Most recent English STAR test score.
6. ELL status.
7. Gender.
8. Pretest score (for posttest).

Following stepwise regressions, interest and attitudes variables
were dropped due to lack of significance as predictors of outcome
variables, as were gender and English STAR score. Table 8
presents the final full regression used to explain the variation in
pretest and posttest scores.

Table 8. Final regression for factors influencing outcomes

Posttest Pretest
Variable

β SE β SE
Pretest

0.39*** 0.11 – –
Math STAR

0.40** 3.22 0.34** 2.79
ELL

0.08 7.98 0.06 5.61
PE Factor1 (Coder)

0.14 1.79 0.62*** 3.10
PE Factor2 (Creator)

-0.01 2.07 0.13 1.64
PE Factor3 (Consumer)

-0.16 1.58 -0.02 1.53
Constant

– 13.82 – 13.39
N

54 54
Adjusted R2

0.53 0.49
*p < 0.5. **p<0.01. ***p<0.001

4.1.4 Performance Based on Prior Experience
While prior programming experience as measured by the pretest
was found to be relevant for the posttest, the three prior
experience factors did not predict performance on the posttest.
This suggested that FACT helped all students regardless of prior
experience as measured by the self-report survey. To further
examine how the prior experience factors affected learning
outcomes, a median split was used to divide students into ‘high’
and ‘low’ groups for the 3 factors– “High Coder”/“Low Coder”,
“High Creator”/“Low Creator”, and “High Consumer”/“Low
Consumer”. As expected, being a High Coder (as opposed to Low
Coder) was beneficial for both pretest and posttest scores on the
CT test. Since neither Media Creators nor Online Consumer
factors were high on prior programming experience, it was also
useful to examine how these sub-groups fared in the posttest. In
general, learning gains were higher for High Creator than Low
Creator students, and being a Low Consumer helped post-scores
and learning gains more than being a High Consumer. These
differences weren’t significant, but were suggestive that perhaps
significant relationships may emerge with larger samples.

5. DISCUSSION
Based on the quantitative results and analyses for the two studies,
it appears that FACT helped all learners attain substantial gains in
learning of basic algorithmic flow of control in computational
solutions. Serial execution was the easiest to learn, as expected.
Between conditionals and loops, learners found loops harder to
tackle. Most of the assessment questions concerning loops
required manipulation of variables as well, which seemed to be
the hardest topic for students to grasp (based on OpenEdX
dashboard data on formative quiz performances [11,15] and
assigned programming activities). Both these aspects have been
known to be particularly difficult for novice programmers [25,33].
Despite our conscious efforts, students struggled with these topics.
Extra attention needs to be given as to how introductory courses
could be improved to help learners build deeper understanding of
variables and the ways in which they work in loops specifically,

and in computational solutions, in general. Some of this may also
be related to the level of math preparation as discussed below.

5.1 Prior Math and English Preparation
Regression analyses revealed math performance was a positively
correlated predictor for CS posttest performance (even when
controlling for the pretest). This correlation has been found in past
research [21]. It is not entirely surprising given that abstraction is
key to computing and a key skill taught in math [5,18]. Given the
difficulties students had with loops and variables (which share a
strong relationship with abstract and algebraic thinking) in
comparison with conditionals, the link to prior math preparation
needs to be probed further. This issue is also significant because
students’ mathematics preparation historically co-varies with
socio-economic status and other indicators of diversity.

English Language Learner (ELL) status was a negative predictor
for the text-heavy transfer test [discussed in 14,15]. However,
ELL students showed high levels of motivation for their open-
ended authentic final projects of choice. They performed better on
the associated interviews even though their projects were on the
lower end of the complexity scale compared to other class projects
[15]. We hope to re-examine these aspects of our curriculum as
we iterate on it and study it further with more diverse student
populations. However, they do suggest that curricula must pay
closer attention to diverse levels of math and English preparation
and ensure that all learners succeed in introductory CS.

5.2 Out-of-school Technology Experiences
The curriculum helped all students achieve significant learning
gains irrespective of prior experience (as measured by the self-
report survey). Not surprisingly, prior programming experience as
measured by the pretest was found to positively predict
performance on the posttest. Regressing posttest performance on
high and low levels of prior experience factors (that resulted from
factor analyses on prior experience survey data) revealed that
among students who did not have prior programming experience,
those with experience in media creation generally did better than
those that did not, and those that engaged only in online gaming
and video watching (to the exclusion of programming or media
creation activities (i.e. the Online Consumers), did worse. Having
a high value for the Online Consumer factor was also correlated to
poor mathematics and English ability (as measured by STAR
tests). This perhaps points to other factors such as low SES and a
lack of out-of-school experiences that may be considered
intellectually enriching. More broadly, these results suggest that
the nature of out-of-school technology experiences have a bearing
on computational learning. These factors have important
implications for curriculum and assessments design, and support
the rationale for courses such as ECS that have a strong equity
focus as we attempt to ensure computing for all.

6. CONCLUSION & IMPLICATIONS
This research describes two studies that were conducted in a
public school. The studies were conducted in an elective class,
which meant learners (who were also mostly male) came into the
course with generally high interest and motivation. Despite this
limited generalizability, the research makes several unique
contributions. It is perhaps the first structured online/blended
introductory middle school curriculum that has been through
rigorous empirical investigation, where computational thinking
learning outcomes are measured through pre-post assessments. It
is a curriculum that has been shown to result in learning gains (in
the context in which it was studied) and to foster CT skills in
middle school students as measured by assessment items used in

prior research including a national CS exam in Israel. It serves as
an example of course designed on an online platform that
effectively employs an iterative research methodology to refine a
curriculum aiming to foster learning in a blended classroom
setting. The conscious attention devoted to teaching (and
assessing) for transfer, as well as attending to perceptions of
computing as a discipline through an engaging corpus of publicly
available videos (presented in detail in prior publications [12,
15]), are also unique aspects of this research. Breaking down pre-
posttest by algorithmic constructs to examine learning on these
different aspects highlights targets of difficulty in middle school
students. This research thus makes contributions to the design of
curricula and assessments using block-based environments such
as Scratch, Blockly, and Alice that are popularly used today.
The finding that students with low prior mathematics achievement
experienced difficulties in learning CS in middle school has broad
importance- it points to a need to build abstraction skills that
math prepares students for. Other recent research also points to
the relevance of English and math skills in environments such as
Scratch for younger grades [17]. Future directions for this effort
involve iterating on the curriculum to attend more closely to prior
math preparation and to make the curriculum more accessible to
all students by continuing to empirically examine its use with
broader audiences of middle school students and teachers.

7. ACKNOWLEDGMENTS
We gratefully acknowledge grant support from the National
Science Foundation (NSF #1343227 and NSF #0835854).

8. REFERENCES
[1] Barron B., & Daring-Hammond, L. 2008. How can we teach

for meaningful learning? In Darling-Hammond, L.,et al.
Powerful learning: What we know about teaching for
understanding. San Francisco: Jossey-Bass.

[2] Brown, J. S., Collins, A., & Newman, S. E. 1989. Cognitive
apprenticeship: Teaching the crafts of reading, writing, and
mathematics. Knowing, learning, and instruction: Essays in
honor of Robert Glaser, 487.

[3] Campe, S., Denner, J., & Werner, L. 2013. Intentional
computing: Getting the results you want from game
programming classes. Journal of Computing Teachers.

[4] Denner, J., Werner, L., & Ortiz, E. 2012. Computer games
created by middle school girls: Can they be used to measure
understanding of computer science concepts?. Computers &
Education, 58(1), 240-249.

[5] Devlin, K. 2003. Why universities require computer science
students to take math. Communications of the ACM, 46(9).

[6] du Boulay, B. 1986. Some difficulties of learning to
program. Journal of Educational Computing Research, 2(1).

[7] Ericson, B., & McKlin, T. 2012. Effective and sustainable
computing summer camps. In Proceedings of the 43rd ACM
technical symposium on Computer Science

[8] Goode, J., Chapman, G., Margolis, J., Landa, J., Ullah,
T., Watkins, D., & Stephenson, C. 2013. Exploring
Computer Science. http://www.exploringcs.org/curriculum

[9] Grover, S. 2011. Robotics and engineering for middle and
high school students to develop computational thinking, in
Annual Meeting of the AERA, New Orleans, LA.

[10] Grover, S., and Pea, R. 2013. Computational Thinking in K–
12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.

[11] Grover, S., Pea, R., & Cooper, S. 2014. Promoting active
learning & leveraging dashboards for curriculum assessment
in an OpenEdX introductory CS course for middle school. In
Proceedings of the first ACM conference on Learning@
scale conference (pp. 205-206). ACM.

[12] Grover, S., Pea, R. & Cooper, S. 2014. Remedying
Misperceptions of Computer Science among Middle School
Students. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. ACM.

[13] Grover, S., Cooper, S., & Pea, R. 2014. Assessing
computational learning in K-12. In Proceedings of the 2014
conference on Innovation & technology in computer science
education (pp. 57-62). ACM.

[14] Grover, S., Pea, R. and Cooper, S. 2014. Expansive Framing
and Preparation for Future Learning in Middle-School
Computer Science. In Proceedings of the 11th ICLS (2014).

[15] Grover, S., Pea, R., Cooper, S. 2015. Designing for Deeper
Learning in a Blended Computer Science Course for Middle
School Students. Computer Sc. Education, 25(2), 199-237.

[16] Guzdial, M. 2009. How we teach Introductory Computer
Science is wrong. Blog at Communications of the ACM.

[17] Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin,
D. 2015. Floors and Flexibility: Designing a programming
environment for 4th-6th grade classrooms. In Proceedings of
the 46th ACM Technical Symposium on Computer Science
Education (pp. 546-551). ACM.

[18] Kramer, J. 2007. Is abstraction the key to computing?.
Communications of the ACM, 50(4), 36-42.

[19] Kurland, D. M., & Pea, R. D. 1985. Children's mental
models of recursive LOGO programs. Journal of
Educational Computing Research, 1(2), 235-243.

[20] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. 2005. A
study of the difficulties of novice programmers. ACM
SIGCSE Bulletin, 37(3), 14-18.

[21] Lewis, C. M., & Shah, N. 2012. Building upon and enriching
grade four mathematics standards with programming
curriculum. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. ACM.

[22] Mayer, R.E. 1989. The psychology of how novices learn
computer programming. In E. Soloway & J.C. Spohrer
(Eds.), Studying the novice programmer (pp. 129–159).
Hillsdale, NJ: Lawrence Erlbaum

[23] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M., 2010.
Learning computer science concepts with Scratch. In
Proceedings of the Sixth International Workshop on
Computing Education Research (ICER '10). ACM.

[24] Parsons, D., & Haden, P. 2006. Parson's programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52 (pp. 157-
163). Australian Computer Society, Inc.

[25] Pea, R. D., & Kurland, D. M. 1983. On the cognitive
prerequisites of learning computer programming. (Tech.
Report No. 16). New York: Bank Street College of
Education, Center for Children and Technology.

[26] Pea, R. D., & Kurland, D. M. 1984. On the cognitive effects
of learning computer programming. New Ideas In
Psychology, 2, 137–168.

[27] Pellegrino, J. W., & Hilton, M. L. (Eds.). 2013. Education
for life and work: Developing transferable knowledge and
skills in the 21st century. National Academies Press.

[28] Repenning, A., Webb, D., & Ioannidou, A. 2010. Scalable
game design and the development of a checklist for getting
computational thinking into public schools. In Proceedings
of the 41st ACM Technical Symposium on Computer Science
Education (SIGCSE ’10), 265–269. New York, NY: ACM.

[29] Robins, A., Rountree, J., & Rountree, N. 2003. Learning and
teaching programming: A review and discussion. Computer
Science Education, 13(2), 137-172.

[30] Schofield, E., Erlinger, M., & Dodds, Z. 2014. MyCS: CS for
middle-years students and their teachers. In Proceedings of
the 45th ACM technical symposium on Computer science
education (pp. 337-342). ACM.

[31] Scott, J. 2013. The royal society of Edinburgh/British
computer society computer science exemplification project.
Proceedings of ITiCSE'13, 313-315.

[32] Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &
Clark, D. 2013. Integrating computational thinking with K-
12 science education using agent-based computation: A
theoretical framework. Education and Information
Technologies, 1–30.

[33] Spohrer, J. C. & Soloway, E. 1986. Novice mistakes: are the
folk wisdoms correct? Communications of the ACM, 29(7.

[34] Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A.
2005. The new educational imperative: Improving high
school computer science education. Computer Science
Teachers Association (CSTA), New York, New York.

[35] Tai, R., Qi Liu, C., Maltese, A.V., Fan, X. 2006. Planning
Early for Careers in Science. Science. 312(5777) 1143-1144

[36] Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993).
Toward a knowledge base for school learning. Review of
educational research, 63(3), 249-294.

[37] Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. 2012.
The Fairy Performance Assessment: Measuring
Computational Thinking in Middle School. In Proceedings of
the 43rd ACM Technical Symposium on Computer Science
Education (SIGCSE '12), 215-220. ACM, New York, NY.

[38] Wilensky, U., Brady, C., & Horn, M. 2014. Fostering
Computational Literacy in Science Classrooms.
Communications of the ACM. 57(8): pp 17-21.

[39] Williams, B., Brown, T., & Onsman, A. 2010. Exploratory
factor analysis: A five-step guide for novices. Australasian
Journal of Paramedicine, 8(3). Retrieved from
http://ro.ecu.edu.au/jephc/vol8/iss3/1

[40] Wing, J. 2006. Computational Thinking. Communications of
the ACM. 49(3), 33-36.

[41] Zur Bargury, I. 2012. A new Curriculum for Junior-High in
Computer Science. ITiCSE'12, pp. 204-208. ACM.

[42] Zur-Bargury, I., Pârv, B., & Lanzberg, D. 2013. A
nationwide exam as a tool for improving a new curriculum.
In Proceedings of ITiCSE’13 (pp. 267-272). ACM.

