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Human learning is distinguished by the range and complexity of skills that can be learned and the
degree of abstraction that can be achieved compared with those of other species. Homo sapiens is
also the only species that has developed formal ways to enhance learning: teachers, schools, and
curricula. Human infants have an intense interest in people and their behavior and possess powerful
implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning
to understand the brain mechanisms underlying learning and how shared brain systems for
perception and action support social learning. Machine learning algorithms are being developed that
allow robots and computers to learn autonomously. New insights from many different fields are
converging to create a new science of learning that may transform educational practices.

Cultural evolution, which is rare among
species and reaches a pinnacle in Homo
sapiens, became possible when new forms

of learning evolved under selective pressure in
our ancestors. Culture underpins achievements in
language, arts, and science that are unprecedented
in nature. The origin of human intelligence is still
a deep mystery. However, the study of child de-
velopment, the plasticity of the human brain, and
computational approaches to learning are laying
the foundation for a new science of learning
that provides insights into the origins of human
intelligence.

Human learning and cultural evolution are sup-
ported by a paradoxical biological adaptation: We
are born immature. Young infants cannot speak,
walk, use tools, or take the perspective of others.
Immaturity comes at a tremendous cost, both to
the newborn, whose brain consumes 60% of its
entire energy budget (1), and to the parents. Dur-
ing the first year of life, the brain of an infant is
teeming with structural activity as neurons grow
in size and complexity and trillions of new con-
nections are formed between them. The brain
continues to grow during childhood and reaches
the adult size around puberty. The development of
the cerebral cortex has “sensitive periods” during
which connections between neurons are more
plastic and susceptible to environmental influence:
The sensitive periods for sensory processing areas
occur early in development, higher cortical areas

mature later, and the prefrontal cortex continues
to develop into early adulthood (2).

Yet immaturity has value. Delaying the matu-
ration and growth of brain circuits allows initial
learning to influence the developing neural archi-
tecture in ways that support later, more complex
learning. In computer simulations, starting the learn-
ing process with a low-resolution sensory system
allowsmore efficient learning than starting with a
fully developed sensory system (3).

What characterizes the exuberant learning that
occurs during childhood? Three principles are

emerging from cross-disciplinary work in psychol-
ogy, neuroscience,machine learning, and education,
contributing to a new science of learning (Fig. 1).
These principles support learning across a range of
areas and ages and are particularly useful in ex-
plaining children’s rapid learning in two unique
domains of human intelligence: language and so-
cial understanding.

Learning is computational. Discoveries in de-
velopmental psychology and in machine learning
are converging on new computational accounts
of learning. Recent findings show that infants and
young children possess powerful computational
skills that allow them automatically to infer struc-
tured models of their environment from the statis-
tical patterns they experience. Infants use statistical
patterns gleaned from experience to learn about
both language and causation. Before they are three,
children use frequency distributions to learn which
phonetic units distinguish words in their native
language (4, 5), use the transitional probabilities
between syllables to segment words (6), and use
covariation to infer cause-effect relationships in
the physical world (7).

Machine learning has the goal of developing
computer algorithms and robots that improve
automatically from experience (8, 9). For exam-
ple, BabyBot, a baby doll instrumented with a
video camera, a microphone, and a loudspeaker
(10), learned to detect human faces using the
temporal contingency between BabyBots’ pro-
grammed vocalizations and humans that tended to
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Fig. 1. The new science of learning has arisen from several disciplines. Researchers in developmental
psychology have identified social factors that are essential for learning. Powerful learning algorithms from
machine learning have demonstrated that contingencies in the environment are a rich source of infor-
mation about social cues. Neuroscientists have found brain systems involved in social interactions and
mechanisms for synaptic plasticity that contribute to learning. Classrooms are laboratories for discovering
effective teaching practices. [Photo credits: R. Goebel (neuroscience), iStockphoto.com/J. Bryson (education),
Y. Tsuno/AFP/Getty Images (machine learning)]
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respond to these babylike vocalizations. After 6
min of learning, BabyBot detected novel faces
and generalized to the schematic faces used in
studies of infant face recognition.

Statistical regularities and covariations in the
world thus provide a richer source of information
than previously thought. Infants’ pickup of this
information is implicit; it occurs without parental
training and begins before infants can manipulate
the physical world or speak their first words. New
machine learning programs also succeed with-
out direct reinforcement or supervision. Learning
from probabilistic input provides an alternative to
Skinnerian reinforcement learning and Chomskian
nativist accounts (11, 12).

Learning is social. Children do not compute
statistics indiscriminately. Social cues highlight
what and when to learn. Even young infants are
predisposed to attend to people and are motivated
to copy the actions they see others do (13). They
more readily learn and reenact an event when it is
produced by a person than by an inanimate device
(14, 15).

Machine learning studies show that system-
atically increasing a robot’s social-like behaviors
and contingent responsivity elevates young chil-
dren’s willingness to connect with and learn from
it (16). Animal models may help explain how
social interaction affects learning: In birds, neuro-
steroids that affect learning modulate brain activity
during social interaction (17). Social interaction
can extend the sensitive period for learning in
birds (18). Social factors also play a role in life-
long learning—new social technologies (for ex-
ample, text messaging, Facebook, and Twitter)
tap humans’ drive for social communication. Edu-
cational technology is increasingly embodying the
principles of social interaction in intelligent tutor-
ing systems to enhance student learning (19).

Learning is supported by brain circuits linking
perception and action.Human social and language
learning are supported by neural-cognitive systems
that link the actions of self and other.Moreover, the
brain machinery needed to perceive the world and
move our bodies to adapt to the movements of
people and objects is complex, requiring contin-
uous adaptation and plasticity. Consider what is
necessary to explain human imitative learning.
Newborns as young as 42min oldmatch gestures
shown to them, including tongue protrusion and

mouth opening (20). This is remarkable because
infants cannot see their own faces, and newborns
have never seen their reflection in a mirror. Yet,
newborns can map from observed behavior to
their ownmatching acts, suggesting shared repre-
sentations for the acts of self and others (15, 20).
Neuroscientists have discovered a striking over-
lap in the brain systems recruited both for the
perception and production of actions (21, 22).
For example, in human adults there is neuronal
activation when observing articulatory movements
in the cortical areas responsible for producing those
articulations (23). Social learning, imitation, and
sensorimotor experience may initially generate, as
well as modify and refine, shared neural circuitry
for perception and action. The emerging field of
social neuroscience is aimed at discovering brain
mechanisms supporting close coupling and at-
tunement between the self and other, which is the
hallmark of seamless social communication and
interaction.

Social Learning and Understanding
Human children readily learn through social in-
teractions with other people. Three social skills
are foundational to human development and rare
in other animals: imitation, shared attention, and
empathic understanding.

Imitation. Learning by observing and imitating
experts in the culture is a powerful social learning
mechanism. Children imitate a diverse range of
acts, including parental mannerisms, speech pat-
terns, and the use of instruments to get things
done. For example, a toddler may see her father
using a telephone or computer keyboard and
crawl up on the chair and babble into the receiver
or poke the keys. Such behavior is not explicitly
trained (it may be discouraged by the parent), and
there is no inborn tendency to treat plastic boxes
in this way—the child learns by watching others
and imitating.

Imitation accelerates learning and multiplies
learning opportunities. It is faster than individual
discovery and safer than trial-and-error learning.
Children can use third-person information (ob-
servation of others) to create first-person knowl-
edge. This is an accelerator for learning: Instead
of having to work out causal relations themselves,
children can learn fromwatching experts. Imitative
learning is valuable because the behavioral ac-

tions of others “like me” serve as a proxy for
one’s own (15).

Children do not slavishly duplicate what they
see but reenact a person’s goals and intentions.
For example, suppose an adult tries to pull apart
an object but his hand slips off the ends. Even at
18 months of age, infants can use the pattern of
unsuccessful attempts to infer the unseen goal of
another. They produce the goal that the adult was
striving to achieve, not the unsuccessful attempts
(14). Children choose whom, when, and what to
imitate and seamlessly mix imitation and self-
discovery to solve novel problems (24, 25).

Imitation is a challenging computational prob-
lem that is being intensively studied in the robotic
and machine learning communities (26, 27). It
requires algorithms capable of inferring complex
sensorimotormappings that go beyond the repeti-
tion of observed movements. The match must be
achieved despite the fact that the teacher may be
different from the observer in several ways (e.g.,
size, spatial orientation, morphology, dexterity).
The ultimate aim is to build robots that can learn
like infants, through observation and imitation
(28). Current computational approaches to imi-
tation can be divided into direct and goal-based
approaches. Direct approaches learn input-action
mappings that reproduce the observed behaviors
(26); goal-based approaches, which are more re-
cent and less explored, infer the goal of the ob-
served behaviors and then produce motor plans
that achieve those goals (29, 30).

Shared attention. Social learning is facilitated
when people share attention. Shared attention
to the same object or event provides a common
ground for communication and teaching. An early
component of shared attention is gaze following
(Fig. 2). Infants in the first half year of life look
more often in the direction of an adult’s head turn
when peripheral targets are in the visual field (31).
By 9 months of age, infants interacting with a
responsive robot follow its head movements, and
the timing and contingencies, not just the visual
appearance of the robot, appear to be key (32). It
is unclear, however, whether young infants are
trying to look at what another is seeing or are
simply tracking head movements. By 12 months,
sensitivity to the direction and state of the eyes
exists, not just sensitivity to the direction of head
turning. If a personwith eyes open turns to one of

Fig. 2. Gaze following is a mechanism that brings adults and infants
into perceptual contact with the same objects and events in the world,
facilitating word learning and social communication. After interacting

with an adult (left), a 12-month-old infant sees an adult look at one
of two identical objects (middle) and immediately follows her gaze
(right).

www.sciencemag.org SCIENCE VOL 325 17 JULY 2009 285

REVIEW

http://www.sciencemag.org


two equidistant objects, 12-month-old infants look
at that particular target, but not if the person makes
the same head movement with eyes closed (33).

A blindfold covering the person’s eyes causes
12-month-olds to make the mistake of following
the head movements. They understand that eye
closure, but not a blindfold, blocks the other per-
son’s view. Self-experience corrects this error. In a
training study, 1-year-olds were given experience
with a blindfold so they understood that it made it
impossible to see. When the adult subsequently
wore the blindfold, infants who had received self-
experience with it treated the adult as if she could
not see (34), whereas control infants did not.
Infants project their own experience onto other
people. The ability to interpret the behavior and
experience of others by using oneself as a model
is a highly effective learning strategy that may be
unique to humans and impaired in children with
autism (35, 36). It would be useful if this could be
exploited in machine learning, and preliminary
progress is being made (37).

Empathy and social emotions. The capacity
to feel and regulate emotions is critical to under-
standing human intelligence and has become an
active area of research in human-computer inter-
action (38). In humans, many affective processes
are uniquely social. Controlled experiments lead
to the conclusion that prelinguistic toddlers en-
gage in altruistic, instrumental helping (39). Chil-
dren also show primitive forms of empathy. When
an adult appears to hurt a finger and cry in pain,
children under 3 years of age comfort the adult,
sometimes offering a bandage or teddy bear (40).
Related behavior has been observed with children
helping and comforting a social robot that was
“crying” (16, 41).

Brain imaging studies in adults show an over-
lap in the neural systems activated when people
receive a painful stimulus themselves or perceive
that another person is in pain (42, 43). These
neural reactions are modulated by cultural expe-
rience, training, and perceived similarity between
self and other (43, 44). Atypical neural patterns
have been documented in antisocial adolescents
(45). Discovering the origins of individual differ-
ences in empathy and compassion is a key issue
for developmental social-cognitive neuroscience.

Language Learning
Human language acquisition poses a major chal-
lenge for theories of learning, and major ad-
vances have beenmade in the last decade (46). No
computer has cracked the human speech code and
achieved fluent speech understanding across talk-
ers, which children master by 3 years of age (11).

Human language acquisition sheds light on the
interaction among computational learning, social
facilitation of learning, and shared neural circuitry
for perception and production.

Behavioral development.Early in development,
infants have a capacity to distinguish all sounds
across the languages of theworld, a capacity shared
by nonhuman primates (47). However, infants’
universal capacities narrow with development,

and by one year of age, infants’ ability to perceive
sound distinctions used only in foreign languages
and not their native environment is weakened.
Infants’ universal capacities become language-
specific between 9 and 12 months of age. Ameri-
can and Japanese infants, who at 7 months of age
discriminated /ra/ from /la/ equally well, both
change by 11 months: American infants improve
significantly while Japanese infants’ skills show a
sharp decline (48).

This transition in infant perception is strongly
influenced by the distributional frequency of sounds
contained in ambient language (4, 5). Infants’ com-
putational skills are sufficiently robust that labo-
ratory exposure to artificial syllables in which the
distributional frequencies are experimentally ma-
nipulated changes infants’ abilities to discriminate
the sounds.

However, experiments also show that the com-
putations involved in language learning are “gated”
by social processes (49). In foreign-language learn-

ing experiments, social interaction strongly influ-
ences infants’ statistical learning. Infants exposed
to a foreign language at 9 months learn rapidly,
but only when experiencing the new language
during social interchanges with other humans.
American infants exposed in the laboratory to
Mandarin Chinese rapidly learned phonemes and
words from the foreign language, but only if ex-
posed to the new language by a live human being
during naturalistic play. Infants exposed to the
same auditory input at the same age and for the
same duration via television or audiotape showed
no learning (50) (Fig. 3). Why infants learned bet-
ter from people and what components of social
interactivity support language learning are currently
being investigated (51). Determining the key stim-
ulus and interactive features will be important for
theory. Temporal contingencies may be critical (52).

Other evidence that social input advances lan-
guage learning comes from studies showing that
infants vocally imitate adult vowel sounds by

Fig. 3. The need for social interaction in language acquisition is shown by foreign-language learning
experiments. Nine-month-old infants experienced 12 sessions of Mandarin Chinese through (A) natural
interaction with a Chinese speaker (left) or the identical linguistic information delivered via television
(right) or audiotape (not shown). (B) Natural interaction resulted in significant learning of Mandarin
phonemes when compared with a control group who participated in interaction using English (left). No
learning occurred from television or audiotaped presentations (middle). Data for age-matched Chinese
and American infants learning their native languages are shown for comparison (right). [Adapted from
(50) and reprinted with permission.]
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5 months but not acoustically matched nonspeech
sounds that are not perceived as human speech
(53, 54). By 10 months, even before speaking
words, the imitation of social models results in
a change in the types of vocalizations children
produce. Children raised in Beijing listening to
Mandarin babble by using tonelike pitches char-
acteristic of Mandarin, which make them sound
distinctly Chinese. Children being raised in Seattle
listening to English do not babble by using such
tones and sound distinctly American.

Children react to a social audience by increas-
ing the complexity of their vocal output. When
mothers’ responses to their infants’ vocalizations
are controlled experimentally, a mother’s imme-
diate social feedback results both in greater num-
bers andmore mature, adultlike vocalizations from
infants (55). Sensory impairments affect infant
vocalizations: Childrenwith hearing impairments
use a greater preponderance of sounds (such as
“ba”) that they can see by following the lip move-
ments of the talker. Infants who are blind babble
by using a greater proportion of sounds that do
not rely on visible articulations (“ga”) (56).

Birdsong provides a neurobiological model of
vocal learning that integrates self-generated sen-
sorimotor experience and social input. Passerine
birds learn conspecific song by listening to and
imitating adult birds. Like humans, young birds
listen to adult conspecific birds sing during a sen-
sitive period in development and then practice that
repertoire during a “sub-song” period (akin to bab-
bling) until it is crystallized (57). Neural models
of birdsong learning can account for this gradual
process of successive refinement (58). In birds, as
in humans, a social context enhances vocal learn-
ing (59).

Neural plasticity. In humans, a sensitive pe-
riod exists between birth and 7 years of age when
language is learned effortlessly; after puberty, new
language learning is more difficult, and native-
language levels are rarely achieved (60, 61). In

birds, the duration of the sensitive period is ex-
tended in richer social environments (18, 62).
Human learning beyond the sensitive period may
also benefit from social interaction. Adult foreign-
language learning improves under more social
learning conditions (63).

A candidate mechanism governing the sensi-
tive period for language in humans is neural com-
mitment (11). Neural commitment is the formation
of neural architecture and circuitry dedicated to the
detection of phonetic and prosodic characteristics
of the particular ambient language(s) to which the
infant is exposed. The neural circuitry maximizes
detection of a particular language and, when fully
developed, interferes with the acquisition of a new
language.

Neural signatures of children’s early language
learning can be documented by using event-related
potentials (ERPs). Phonetic learning can be docu-
mented at 11 months of age; responses to known
words, at 14 months; and semantic and syntactic
learning, at 2.5 years (64). Early mastery of the
sound patterns of one’s native language provides a
foundation for later language learning: Children
who show enhanced ERP responses to phonemes
at 7.5months show faster advancement in language
acquisition between 14 and 30 months of age (65).

Children become both native-language listen-
ers and speakers, and brain systems that link per-
ception and action may help children achieve
parity between the two systems. In adults, func-
tional magnetic resonance imaging studies show
that watching lip movements appropriate for speech
activates the speech motor areas of the brain (66).
Early formation of linked perception-production
brain systems for speech has been investigated by
using brain imaging technology called magneto-
encephalography (MEG). MEG reveals nascent
neural links between speech perception and pro-
duction. At 6 months of age, listening to speech
activates higher auditory brain areas (superior
temporal), as expected, but also simultaneously

activates Broca’s area, which
controls speech production,
although listening to non-
speech sounds does not [(67);
see also (68)]. MEG technol-
ogywill allow linguists to ex-
plore how social interaction
and sensorimotor experience
affects the cortical process-
ing of language in children
andwhy young children can
learn foreign languagemate-
rial from a human tutor but
not a television.

New interactive robots
are being designed to teach
language to children in a
social-likemanner. Engineers
created a social robot that
autonomously interacts with
toddlers, recognizing their
moods and activities (16)
(Fig. 4). Interaction with the

social robot over a 10-day period resulted in a
significant increase in vocabulary in 18- to 24-
month-old children compared with the vocabu-
lary of an age-matched control group (41). This
robotic technology is now being used to test
whether children might learn foreign language
words through social games with the robot.

Education
During their long period of immaturity, human
brains are sculpted by implicit social and statis-
tical learning. Children progress from relatively
helpless, observant newborns to walking, talking,
empathetic people who perform everyday exper-
iments on cause and effect. Educators are turning
to psychology, neuroscience, and machine learn-
ing to ask: Can the principles supporting early
exuberant and effortless learning be applied to
improve education?

Progress is being made in three areas: early
intervention programs, learning outside of school,
and formal education.

Children are born learning, and how much
they learn depends on environmental input, both
social and linguistic.Many children entering kinder-
garten in the United States are not ready for school
(69), and children who start behind in school-entry
academic skills tend to stay behind (70). Neuro-
science work suggests that differences in learning
opportunities before first grade are correlated with
neural differences that may affect school learning
(71, 72).

The recognition that the right input at the right
time has cascading effects led to early interventions
for children at risk for poor academic outcomes.
Programs enhancing early social interactions and
contingencies produce significant long-term im-
provements in academic achievement, social ad-
justment, and economic success and are highly
cost effective (73–75).

The science of learning has also affected the
design of interventions with children with dis-
abilities. Speech perception requires the ability to
perceive changes in the speech signal on the time
scale of milliseconds, and neural mechanisms for
plasticity in the developing brain are tuned to
these signals. Behavioral and brain imaging ex-
periments suggest that children with dyslexia have
difficulties processing rapid auditory signals; com-
puter programs that train the neural systems re-
sponsible for such processing are helping children
with dyslexia improve language and literacy (76).
The temporal “stretching” of acoustic distinctions
that these programs use is reminiscent of infant-
directed speech (“motherese”) spoken to infants in
natural interaction (77). Children with autism spec-
trum disorders (ASD) have deficits in imitative
learning and gaze following (78–80). This cuts
them off from the rich socially mediated learning
opportunities available to typically developing chil-
dren, with cascading developmental effects. Young
children with ASD prefer an acoustically matched
nonspeech signal over motherese, and the degree
of preference predicts the degree of severity of
their clinical autistic symptoms (81). Children

Fig. 4. A social robot can operate autonomously with children in a
preschool setting. In this photo, toddlers play a game with the robot. One
long-term goal is to engineer systems that test whether young children
can learn a foreign language through interactions with a talking robot.
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with ASD are attracted to humanoid robots with
predictable interactivity, which is beginning to be
used in diagnosis and interventions (82).

Elementary and secondary school educators
are attempting to harness the intellectual curiosity
and avid learning that occurs during natural so-
cial interaction. The emerging field of informal
learning (83) is based on the idea that informal
settings are venues for a significant amount of
childhood learning. Children spend nearly 80%
of their waking hours outside of school. They
learn at home; in community centers; in clubs;
through the Internet; at museums, zoos, and aquar-
iums; and through digital media and gaming.
Informal learning venues are often highly social
and offer a form of mentoring, apprenticeship,
and participation that maximizes motivation and
engages the learner’s sense of identity; learners
come to think of themselves as good in tech-
nology or as budding scientists, and such self-
concepts influence children’s interests, goals, and
future choices (84, 85). A recent National Research
Council study on science education (83) cataloged
factors that enliven learning in informal learning
venues with the long-term goal of using them to
enhance learning in school.

In formal school settings, research shows that
individual face-to-face tutoring is the most ef-
fective form of instruction. Students taught by
professional tutors one on one show achievement
levels that are two standard deviations higher than
those of students in conventional instruction (86).
New learning technologies are being developed
that embody key elements of individual human
tutoring while avoiding its extraordinary financial
cost. For example, learning researchers have de-
veloped intelligent tutoring systems based on cog-
nitive psychology that provide an interactive
environment with step-by-step feedback, feed-
forward instructional hints to the user, and dy-
namic problem selection (19). These automatic
tutors have been shown to approximate the ben-
efits of human tutoring by adapting to the needs of
individual students, as good teachers do. Class-
rooms are becoming living laboratories as research-
ers and educators use technology to track and
collect data from individual children and use this
information to test theories and design curricula.

Conclusions
A convergence of discoveries in psychology, neu-
roscience, and machine learning has resulted in
principles of human learning that are leading to
changes in educational theory and the design of
learning environments. Reciprocally, educational
practice is leading to the design of new experi-
mental work. A key component is the role of “the
social” in learning.What makes social interaction
such a powerful catalyst for learning? Can key
elements be embodied in technology to improve
learning? How can we capitalize on social factors
to teach children better and to foster their natural
curiosity about people and things? These are
deep questions at the leading edge of the new
science of learning.
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