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In order for stimuli to be perceptually discriminable, their rep-
resentations in the brain must be distinct. Investigating the task of
discriminating the syllables /ra/ and /la/, we hypothesized that the
more distinct a person’s neural representations of those sounds
were, the better their behavioral ability to discriminate them would
be. Standard neuroimaging approaches are ill-suited to testing this
hypothesis as they have problems differentiating between neural
representations spatially intermingled within the same brain area.
We therefore performed multi-voxel pattern-based analysis of the
functional magnetic resonance imaging (fMRI) activity elicited by
these syllables, in native speakers of English and Japanese. In right
primary auditory cortex, the statistical separability of these fMRI
patterns predicted subjects’ behavioral ability to tell the sounds
apart, not only across groups but also across individuals. This
opens up a new approach for identifying neural representations and
for quantifying their task suitability.
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Introduction

During early childhood, people’s neural representations of

speech sounds become finely tuned to the phonetic distinctions

of their ownnative language (Kuhl 2004). Thus, English speakers’

representations are well suited for hearing distinctions that are

crucial for the English language, and Japanese speakers’

representations are correspondingly well suited for their own

mother tongue. However, neural representations that work well

for the Japanese language meet with less success when

confronted with the task of perceiving English language

phonetic contrasts, as the well-known difficulty hearing the

difference between /r/ and /l/ attests (Underbakke et al. 1988;

Logan et al. 1991; Guion et al. 2000; McCandliss et al. 2002;

Iversonet al. 2003). English speakers’ representations, in turn, are

inadequate for other tasks, such as for hearing the difference

between the retroflex and dental /r/ sounds in Hindi (Pruitt et al.

2006).

The present study asks the following question: can we

specify how the neural representations of the syllables /ra/ and

/la/ differ between English and Japanese speakers, and

moreover can we predict individual differences in people’s

perceptual ability to discriminate those speech sounds, purely

on the basis of the neural activation patterns that the sounds

evoke in their brains? Specifically, it seeks to test the

hypothesis that the more distinct a person’s neural representa-

tions of /ra/ and /la/ are, the better their behavioral ability to

discriminate the 2 syllables will be.

Relations between Neural Activity, Behavioral
Performance, and Perceptual Discriminability

Many studies have demonstrated correlations between neural

activity and levels of behavioral performance. In most cases,

increasing levels of neural activity in a given brain area correlate

with better behavioral performance in the task that the region

subserves. This type of relation between neural activity and

behavioral performance is schematically illustrated in Figure 1A.

In the present study, we take a different approach. Greater

intensity of neural activity is not necessarily better: success or

failure in a task may be determined not by the intensity of

neural activation evoked but instead by the properties of the

neural representations that are involved.

This is especially true for discrimination tasks: in order to

make a fine-grained behavioral discrimination, the brain needs

correspondingly fine-grained neural representations. Thus, the

fact that native English speakers have no difficulty hearing the

difference between /r/ and /l/ implies that the neural activation

patterns that those sounds evoke in their brains must be

distinguishable. The hypothesis that we test in the present study

predicts that in Japanese speakers, the neural activation patterns

evoked by those sounds will not be as distinguishable from each

other as they are in English speakers.

Studies inwhichmore intense neural activity does correspond

to improved behavioral performance, unlike in the experiment

presented here, are of 2 sorts. The improved performance can be

within individuals, with correct trials producing greater activa-

tion than incorrect trials, for example, studies of memory

encoding in the hippocampus (Brewer et al. 1998; Wagner

et al. 1998). Alternatively, the differences in performance can be

across individuals, with greater activity being found in people

who performwell on a given task compared with people who do

not. This type of result has been found across multiple domains:

For example, greater neural activity can predict better language

ability (Demb et al. 1997; Crinion and Price 2005), mathematical

ability (Grabner et al. 2007), or expertise in visual object

recognition (Gauthier et al. 2000). In such cases, themore active

the brain area is, the more work it gets done.

However, this is not always the case. One example of where

more intense activation is not necessarily better is in perform-

ing visual acuity tasks. Visual acuity is better at the fovea than in

the periphery because the fovea is represented by neurons

with smaller receptive fields and not because those neurons

fire any more vigorously. Because each cortical neuron

represents a smaller patch of visual space at the fovea, the

total amount of cortical tissue representing that high-acuity

part of the visual field is correspondingly larger. This relation

between the size of a cortical representation and behavioral

ability in acuity tasks was demonstrated using functional
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magnetic resonance imaging (fMRI) by Duncan and Boynton

(2003, 2007) and is sketched in Figure 1B.

Because there is a well-defined spatial map in primary visual

cortex, it is possible directly to measure how fine grained its

neural representations are and to relate this measurement to

behavior. However, for speech sounds the question of what

a fine-grained neural representation might look like is less clear.

One way in which 2 neural activation patterns can be

distinguished from each other is if they are spatially separated.

However, there is no known ‘‘phonotopic’’ map in the brain, for

example, with /r/-evoked activation being more anterior and

/l/ more posterior. Another way for the activations to be

distinguishable would be via intensity, for example, if /r/ were

to elicit activation twice as strong as /l/. Again, however,

neuroimaging studies suggest that this is not the case (Callan

et al. 2003, 2004; Tricomi et al. 2006). Such a coding scheme

would also run into difficulties as 2 /l/ stimuli heard together

would produce neural activation easily confusable with the

activation from a single /r/.

Measuring the Distinctness of Neural Representations
Using Multi-Voxel Spatial fMRI Patterns

Figure 1C illustrates the hypothesis tested in the present study:

In people who can perceptually discriminate /r/ from /l/, the

spatial patterns of fMRI activation evoked in their brains by

those stimuli will be quite distinct, whereas in Japanese

speakers, for whom /r/ and /l/ are difficult to tell apart, the

evoked patterns of neural activity will be very similar. A crucial

aspect of this hypothesis is illustrated in Figure 1C: The most

distinct pair of fMRI activity patterns, in the rightmost column,

is intermingled in the same part of cortex, and they contain

equal overall amounts of activation. Thus, on this hypothesis,

the relation between neural activity and levels of behavioral

performance would be completely different from the ‘‘more

activation is better’’ scenario sketched in Figure 1A. Instead,

a person’s ability to hear the difference between /r/ and /l/

would depend on how distinct those sounds’ neural represen-

tations are from each other.

In standard fMRI analysis, spatial smoothing is applied to the

blood oxygen level--dependent (BOLD) images. This smoothing

has the effect of pooling the activations fromvoxelswithin a local

spatial neighborhood, thereby improving the signal-to-noise

ratio. However, as Figure 1C illustrates, stimuli that evoke quite

distinct spatial fMRI patternsmay produce equal total amounts of

activation within a local spatial area. After spatial smoothing, the

pattern differences will have been obliterated, and hence

standard fMRI analysis will find the resulting smoothed average

activations to be indistinguishable. It is for this reason that

previous studies have concentratedmostly on comparing speech

against nonspeech (Binder et al. 2000; Scott et al. 2000; Benson

et al. 2001; Liebenthal et al. 2005) rather than comparing one

speech token against another.

In the present study, we adopted an alternative technique:

analyzing the unsmoothed local spatial fMRI patterns. Recent

studies have shown that multi-voxel spatial patterns in fMRI data

do indeed contain information not revealed by conventional

statistical analyses (Haxby et al. 2001; Cox and Savoy 2003;

Kamitani and Tong 2005; Polyn et al. 2005; Kriegeskorte et al.

2006; Hampton and O’Doherty 2007; Haynes et al. 2007; Pessoa

and Padmala 2007; Serences and Boynton 2007; Williams et al.

2007), but the question of whether such patterns can be used to

predict individual differences in behavioral ability has not been

addressed.

A crucial advance in multi-voxel pattern analysis was made by

Kriegeskorte et al. (2006), who proposed measuring the

statistical information obtainable from within the local spatial

neighborhood, or ‘‘sphere of information,’’ at each point of the

brain. Thismethod, ‘‘information-based fMRI,’’ allows anumber to

Figure 1. Different varieties of relations between neural activity and behavioral
performance. (A) Many previous studies have found circumstances in which greater
neural activity in a given brain area is associated with better behavioral performance.
(B) In acuity tasks, behavioral performance is associated not with increased activation
intensity but instead with the size of the cortical representations of the stimuli. Larger
cortical area corresponds to small receptive fields, so that the neural responses are
more fine grained. This relation was demonstrated using fMRI by Duncan and
Boynton, first in visual cortex (Duncan and Boynton 2003) and subsequently in
somatosensory cortex (Duncan and Boynton 2007). (C) In the present study, we test
the hypothesis that subjects’ behavioral ability to discriminate /ra/ from /la/ depends
upon how distinct from each other the underlying neural representations are. The
degree of distinctness is not determined at the single-voxel level but instead is
measured in terms of how separable the multi-voxel spatial patterns of evoked fMRI
activity are. Note that all the activation patterns shown in panel (C) contain equal
total amounts of local activation. Thus, this hypothesized relation between neural
activity and levels of behavioral performance would be completely different from the
‘‘more activation is better’’ scenario sketched in panel (A).
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be assigned to each voxel in the brain,where this number reflects

not the amount of fMRI activation at that voxel but instead the

statistical information contained in the local neighborhood

centered on that voxel.

In the present study, we exploited this information-based

approach to derive a quantitative measure of how distinct the

neural representations of different syllabic stimuli were from

each other. The specific measure that we used was the degree

to which a classifier algorithm was able to separate the spatial

fMRI patterns evoked by the stimuli. This neural measure

allowed us to predict individual differences in the subjects’

behavioral ability to tell the syllabic stimuli apart.

Native Language, Formant Space, and Discriminability

The sounds /r/ and /l/ are phonemic in English, meaning that

they distinguish between words with different meanings, but in

Japanese they are not (Tsujimura 2007). This phonological fact

is borne out in psycholinguistic studies which demonstrate

Japanese speakers’ difficulty in perceiving the /r/--/l/ distinc-

tion (Goto 1971; Miyawaki et al. 1975; Iverson et al. 2003;

Zhang et al. 2005). Consistent with the perceptual literature,

this study manipulates 2 of the several spectral and temporal

differences that distinguish these 2 sounds in American English,

namely the frequencies of the second and third formants when

other cues are held constant. (Formants are spectral prom-

inences, or peaks in amplitude in the frequency spectrum,

which vary mainly with the length and shape of the vocal tract.)

Figure 2 shows how the sounds /r/ and /l/ are positioned in

this F2/F3 formant space, for English and Japanese speakers. In

particular, in English speakers /r/ and /l/ form 2 distinct

phonemic categories, with /r/ corresponding to lower F3

values and /l/ to higher F3 values. Therefore, a change between

high and low F3 produces a change in phonemic category and

is hence easy for English speakers to perceive.

In contrast, Japanese speakers do not have distinct phone-

mic categories corresponding to high and low F3, as is shown

in Figure 2B. For them, changes in F3 are a type of allophonic

variation, meaning that such changes may alter how the

stimulus sounds, but not in a way that changes the phonemic

label, that is, word meaning should not be affected by such

changes. Changes in the F2 dimension do not produce

phonemic category changes for either English or Japanese

subjects. Such changes are correspondingly hard to perceive

for both groups, although Japanese speakers’ sensitivity to F2

differences is slightly greater than it is for English speakers. The

perceptual sensitivity values, d#, of the English and Japanese

speakers to F2 differences and F3 differences are shown in

Supplementary Figure S1.

Also shown in Figure 2 are the 4 regions in formant space from

which our fMRI stimuli were drawn, covering the 4 possible

combinations of F2 and F3: High-F2/High-F3, High-F2/Low-F3,

Low-F2/High-F3, and Low-F2/Low-F3. This figure is a schematic

simplification. In the Supplementary Material, a detailed plot is

shown (Supplementary Fig. S2) of all the stimuli used in formant

space, their F2 and F3 frequencies, the perceptual category ratings

assigned to them by the English and Japanese speakers, and

precisely which stimuli were used in the fMRI experiment.

Spectrograms of the stimuli are shown in Supplementary Figure S3.

A Prediction: fMRI Pattern Separability Predicts
Perceptual Discriminability

Given the above, the hypothesis that the statistical separability

of fMRI patterns is related to perceptual discriminability leads

to the following prediction: In English speakers, sounds that

differ along the F3 dimension will evoke fMRI patterns that are

more separable from each other than do sounds that differ in

F2. Conversely, in Japanese speakers, F2 differences will lead to

more separable fMRI patterns than will F3 differences. If the

pattern separability tracks perceptual discriminability not only

in its direction but also in its magnitude, then, in the English

speakers, F3 differences will be a great deal more separable

than F2 differences, but, in the Japanese, F2 differences will be

just slightly more separable than F3 differences. In the

following discussion, the term ‘‘separability’’ will be used to

refer to the degree to which spatial fMRI patterns can be

statistically distinguished from each other and the term

‘‘discriminability’’ will be used to describe people’s abilities to

tell stimuli apart perceptually.

Testing the Prediction

To test this hypothesis, we performed fMRI scans of 10 native

American English and 10 native Japanese speakers while they

listened to /ra/ and /la/ stimuli that differed along the F2 and

F3 dimensions. The stimuli used were synthesized speech,

and all ended with the constant vowel segment /a/, that is, /ra/

and /la/. The scans used a simple blocked design, with a single

stimulus presented 12 times in each 25-s block, and the

subjects pressing a button at the end of each block to identify

the stimulus as either /ra/ or /la/. Outside of the scanner, the

subjects were asked to make same/different judgments in an

Figure 2. A simplified illustration of how different stimuli in F2/F3 formant space are perceived by English speakers (A) and Japanese speakers (B). The locations in this formant
space of the 4 types of stimuli presented in the fMRI experiment are shown: High-F2/High-F3, High-F2/Low-F3, Low-F2/High-F3, and Low-F2/Low-F3.

Cerebral Cortex January 2010, V 20 N 1 3

Supplementary Figure S5
Supplementary Material
Supplementary Fig. S2
Supplementary Figure S5


AX discrimination task, for the range of possible high/low F2/

F3 stimulus pairings.

We then analyzed the resulting fMRI data to determine the

separabilityof the fMRIpatterns evokedby the various stimuli. The

fMRI data were unsmoothed and were spatially normalized to the

standard International Consortium for Brain Mapping 152

(ICBM152) echo-planar imaging (EPI) template brain without

changing the original native-space voxel size. We used the sphere

of information approach developed by Kriegeskorte et al. (2006),

collecting the fMRI time courses in a 2-voxel-radius discretized

sphere, with the sphere centered on each voxel in the brain in

turn. Such a ‘‘sphere’’ contains 33 voxels, thereby generating a

33-element vector of fMRI activation values at each time point,

with each vector corresponding to a particular spatial pattern of

voxel activations in the sphere at a given moment in time.

To calculate the statistical separability of the fMRI patterns

evoked by 2 different stimulus conditions, the 33-element

activation vectors corresponding to the time points when those

conditions were taking place were given as input to a linear

support vectormachine (SVM),with the desired output being the

2 condition labels. SVMs are algorithms that attempt to separate

the data into classes, such that the margin between the decision

boundary and the closest data points is as large as possible.

As ourmeasure of pattern separability, we used the percentage

correct achievedby the trainedSVM, foreachvoxel’sKriegeskorte

sphere. Six-fold cross-validation was used (see Cross-Validation,

Overfitting, and Noise below). The resulting ‘‘contrast image’’

consisted of the average percentage correct obtained by the SVM

on the 6 cross-validation test sets, for the sphere of information

centered on each corresponding voxel.

Observed percentage correct values on the test set generally

varied between 50% (the chance level of performance), in areas

such as white matter and the ventricles where no task-related

activity was present, up to around 65--70% in some gray matter

regions. Viewing the 2-category classification as a binomial

random process with variance np(1-p) where p = 1/2, the

standard deviation (SD) of chance performance would beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10031=231=2;

p
which is equal to 5%. Thus, a test set score of

65% correct is 3 SDs above the mean.

Although using a nonlinear kernel in the SVM would have

resulted in higher percentage correct scores, the advantage of

a linear SVM is that it draws a simple planar decision boundary

through the space of voxel activations. Nonlinear SVMs can create

complicated curved decision boundaries, which are harder to

interpret; it couldbecomeunclearwhether thepercentagecorrect

tells us more about the statistics of the spatial patterns in the fMRI

dataor themathematical agilityof thenonlineardecisionboundary.

Using the linear SVM, we calculated, for each subject, 2

different measures of statistical separability: the separability of

fMRI patterns evoked by the high-F3 stimuli from those evoked

by the low-F3 stimuli and the separability of high-F2 versus low-

F2. This allowed us to calculate an F3-minus-F2 separability

contrast image for each subject. These contrast images were

passed into a second-level random-effects 2-sample t-test,

looking for areas where the F3-minus-F2 separability was larger

in the English speakers than the Japanese speakers.

Materials and Methods

fMRI Scanning
fMRI scans were carried out on a GE Signa 1.5-T scanner at the

University of Washington. A standard BOLD EPI sequence was used:

time repetition (TR) = 2000 ms, time echo = 40 ms, field of view = 240 3

240 mm, 20 slices, voxels 3.75 3 3.75 mm, slice thickness = 4.5 mm, and

interslice interval = 1.0 mm.

Each subject performed2 functional runs, lasting 276TRs each (552 s).

During the scan, the subjects performed a syllable identification task,

presented in a simple blocked design. In each block, a single syllable was

presentedonceevery 2 s, for 24 s in all. Each stimulus lasted270ms. At the

end of each block, subjects had 5 s to press a button, indicating whether

they perceived the syllable to be /ra/ or /la/. The auditory stimuli were

presented using Avotec MRI-compatible headphones. After each task

block, there was a 16-s rest block.

The question of whether to have the subjects respond after each

stimulus within the block, as opposed to responding just once at the

end of the block, hinges on whether one is more interested in neural

activity related to the perception of the stimulus or related to the

decision-making process underlying the responses. In the present

study, we are more interested in the perception-related activity, so we

chose to minimize the number of subject responses. Because all the

stimuli within a block were the same, one response at the end of each

block was sufficient.

There were 12 blocks in all per run, with 3 for each of the 4 different

stimulus types: High-F2/High-F3, High-F2/Low-F3, Low-F2/High-F3, and

Low-F2/Low-F3. The different types of block were pseudorandomly

ordered across the 2 functional runs.

MRI Data Processing
For tracing each individual subject’s right Heschl’s gyrus, the high-

resolution (0.9375 3 0.9375 3 1.4 mm) T1 anatomical image was rigidly

coregistered to their mean BOLD image and then spatially normalized

using the parameters that were calculated from the BOLD normaliza-

tion. The Heschl’s regions of interest (ROIs) were manually traced onto

the underlying anatomy using FSLview (Oxford Centre for Functional

Magnetic Resonance Imaging of the Brain 2007). The mean of the 20

subjects’ coregistered and normalized anatomical images was used as

the anatomical underlay for all the MRI cross-sections in the paper.

The BOLD images were preprocessed using Statistical Parametric

Mapping, version 2 (SPM2) (Poline et al. 1997). They were motion

corrected and then spatially normalized to the ICBM152 EPI template,

preserving the original 3.75 3 3.75 3 5.5 mm voxel size. This

normalization step was carried out before performing the informa-

tion-based fMRI analysis, as it also is in standard general linear model

(GLM) analyses, so that the spheres of information for all the subjects

would encompass the same areas of neural tissue. Note that spatial

normalization is independent from the grid structure of the slicing used

to define voxels. By keeping this voxel grid size the same, we sought to

minimize the interpolation and partial-volume-averaging effects de-

scribed above.

For the information-based fMRI analysis (Kriegeskorte et al. 2006), no

spatial smoothing was applied. Standard fMRI analysis was also carried

out using SPM2. For that analysis, a separate copy of the data were

spatially smoothed using a 6-mm full width half maximum Gaussian.

The voxels’ time courses were extracted and were high-pass filtered

with a 300-s cutoff, in order to remove slow drifts. No low-pass temporal

whitening filter was applied. After being zero-meaned, the time courses

were then ready to be used for the information-based fMRI analysis.

Information-Based fMRI Analysis
For each voxel in the brain, the local spatial neighborhood of voxels

was extracted, using a discrete sphere of radius equal to 2 voxels,

making a sphere of information (Kriegeskorte et al. 2006) containing

33 voxels in all.

Two pairs of conditions were compared against each other: F3-high

versus F3-low and F2-high versus F2-low. The time points correspond-

ing to each condition were calculated by convolving the base condition

time course by a haemodynamic response function and then picking

those time points where the convolved result exceeded its mean value.

The 33-element activation vectors corresponding to Conditions A and

B, for each of the above pairings, were then passed into a linear SVM.

We used the Lagrangian SVM algorithm, developed by Mangasarian

and Musicant (2000, 2001). Their Matlab code implementing the
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algorithm is downloadable from http://www.cs.wisc.edu/dmi/lsvm/.

The SVM was fitted to the data set using a maximum of 100 iterations.

Six-fold cross-validation was used (see Cross-Validation, Overfitting, and

Noise below). On a 2.5-GHz Intel Core 2 Duo CPU running Matlab 7.3

on Fedora Core 6 linux, each brain full of data took approximately 15

min to process per each cross-validation repetition. The resulting

contrast image consisted of the average percentage correct obtained by

the SVM on the 6 cross-validation test sets, for the sphere of

information centered on each corresponding voxel.

For each subject, the F2high-versus-lowcontrast imagewas subtracted

from the F3 high-versus-low image to provide a measure of how much

more separable the spatial patterns elicited by F3 differences were than

F2 differences. These F3-minus-F2 contrast imageswere then passed into

a second-level random-effects analysis in SPM2, using a 2-sample t-test to

determine where the F3-minus-F2 value was higher in the English

subjects than in the Japanese.

Note that the SVM did not have any information about the temporal

order of the TRs within a condition; all the time points corresponding

to one condition were lumped together into a single class without any

time indexing. Other groups have incorporated temporal information

into their classifiers (Mourao-Miranda et al. 2007), and this could be an

interesting area of investigation in our future work. However, it was not

done in the present study.

Cross-Validation, Overfitting, and Noise
Typically, when a classifier algorithm is trained on a data set, the

purpose is so that the trained up classifier can subsequently be used to

analyze new data. The trained classifier will perform poorly on the new

data if it learned aspects of the training set that are not representative

of the classes in the broader population. If that happens, then the

classifier will fail to generalize from the training set to subsequent test

sets. This is known as overfitting (Bishop 1995).

To guard against this, we performed 6-fold cross-validation, which

involved the following: the 2 stimulus conditions (e.g., high-F3 and low-F3)

had12blocks each, spreadacross the2 runs. Foreach iterationof thecross-

validation, 1 block from each condition was randomly selected (without

replacement) to be used in the test set and the other 10 blocks were used

for training. Thus, over the course of the 6 iterations, every stimulus block

participated in the test set exactly once. Because the blocks were

separated from each other by 16 s of rest, any potential hemodynamically

induced temporal correlation between the training set and test set fMRI

data points was prevented. The mean percentage correct obtained across

these 6 test sets was then calculated to give the final output.

Although cross-validation brings with it the crucial benefit of

avoiding overfitting, it also carries costs. The first cost is computational:

to compute 6-fold cross-validation takes 6 times as long. The second

cost is that it adds noise to the analyses: ideally an analysis would use all

the available data points, but each partitioning of the data into training

and test sets prevents some arbitrary subset of the data points from

being modeled. The minimally disruptive partitioning is ‘‘leave one out’’

cross-validation, in which only one data point is used for the test set

and every data point is used in turn. However, this also carries the

highest computational cost, taking n times longer to calculate for n

data points. The 6-fold cross-validation used here occupies a middle

ground, but it should be borne in mind that the statistical significance

of the results presented here is slightly lower than it would be if

lengthy leave one out cross-validation had been used.

Nonparametric Multiple Comparisons Correction
Because the analysis presented here uses unsmoothed data, the theory

of Gaussian random fields (Poline et al. 1997) does not apply. Thus,

no corrected P value based on the effective number of spatially

independent tests is currently available. However, multiple compar-

isons correction can also be performed using nonparametric methods,

which do not rely on any assumptions about the spatial smoothness

of the data (Nichols and Holmes 2002) (we would like to thank Russ

Poldrack for suggesting the use of a nonparametric approach here).

Figure 3A shows the right Heschl’s ROI thresholded at the uncorrected

P value of 0.001. Supplementary Figure S4 shows that this is significant

at the family-wise error--corrected P value of P = 0.083, as calculated

using the statistical nonparametric mapping (SnPM) nonparametric

analysis package (Nichols and Holmes 2002).

As is noted in the section Cross-Validation, Overfitting, and Noise,

the P values obtained from cross-validated classifier analyses are likely

to be somewhat overconservative, as the partitioning of the data into

training and test sets introduces a source of noise that is not present

in the data itself. Ideally, a process for generating corrected P values

would take such factors into account and would modify the resultant

P values accordingly. No such method is currently available.

In the absence of such a method, a nonparametric multiple com-

parisons approach lacking any classifier-related information is probably

the best available approach, albeit perhaps an overly conservative one.

SnPM randomly permutes the labels of Japanese and English across the 20

subjects, calculates the T value of the difference between the ‘‘English’’

and ‘‘Japanese’’ speakers for each such relabeling, and then compares the

T value from the true subject labeling to the distribution of T values from

themany random labelings. For each relabeling, a single summary statistic

is calculated, which in this case is the size of the biggest above-threshold

cluster that emerges from that labeling’s English versus Japanese group

difference. The distribution of these maximum cluster sizes can also be

Figure 3. (A) Areas in which the F3-minus-F2 fMRI pattern separability is greater for the English speakers than for the Japanese. It can be seen that this random-effects contrast
reaches its maximal significance in right Heschl’s gyrus (primary auditory cortex). Note that this is not ‘‘activation,’’ as in conventional fMRI analysis, but is instead the amount of
information present at each voxel (Kriegeskorte et al. 2006). The anatomical underlay image is the mean of the 20 subjects’ coregistered and normalized anatomical scans. (B)
The local spatial patterns from which the statistics in panel (A) are calculated extend beyond the voxels shown there. The region spanned by the voxels that contribute to that ROI
are shown in blue. Shown in yellow are the voxels spanned by the Heschl’s gyri of the subjects, manually traced on each individual’s T1 anatomical scan. The areas of overlap are
shown in green.

Cerebral Cortex January 2010, V 20 N 1 5

http://www.cs.wisc.edu/dmi/lsvm/
Supplementary Figure S5


compared against the maximum cluster size that arises from the true

subject labeling. Because the ‘‘English’’ and ‘‘Japanese’’ labels are applied

to entire brain at once, rather than voxel by voxel, and because the

maximumcluster size value is just one single number for thewhole brain,

the P value describing how the true labeling’s maximum cluster size

compares to the others is the result of just a single statistical comparison,

not of multiple comparisons.

Speech Stimuli
The speech stimuli were synthesized using the HLsyn program (Hanson

and Stevens 2002), from Sensimetrics Corporation, Cambridge, MA.

This program allows speech synthesis parameters to be entered at

a high level (HL parameters) or at the lower level of the Klatt formant

synthesizer (KL parameters). In the present study, all values were

entered as KL parameters.

At the first stage, a broad array of different stimuli was generated,

differing in the starting frequencies of their F2 and F3 formant

transitions. There were 57 such tokens, varying in F2 (701--2201 Hz, in

300-Hz steps) and F3 (725--3925 Hz, in 300-Hz steps). These stimuli

were then presented to American English (n = 9) and Japanese (n = 14)

native speakers, who were asked to give their phonetic identification

and goodness ratings. Note that these were not the subjects who

participated in the fMRI experiment but instead were a totally

nonoverlapping group. Each syllable was identified and was rated for

goodness on a 7-point scale (1 = very poor, 7 = very good).

The details of the stimulus array and the behavioral results are

shown in Supplementary Figure S2. The English speakers identified the

syllables as English /ra/, /la/, and /wa/. The Japanese speakers identified

the syllables as Japanese /ra/ and /wa/. The stimuli that received the

highest rating scores are marked in Supplementary Figure S2 with red

squares.

Twelve of the stimuli that received the highest perceptual goodness

ratings were selected from the array to be used for the subsequent fMRI

experiment with different subjects. These stimuli were of 4 sorts: High-

F2/High-F3, High-F2/Low-F3, Low-F2/High-F3, and Low-F2/Low-F3.

The selected stimuli are highlighted in Supplementary Figure S2 by the

black outlined regions.

The detailed stimulus synthesis parameters are as follows: syllable

duration = 270 ms, consonant duration = 60 ms, consonant-to-vowel

F2/F3 transition duration = 30 ms, vowel /a/ duration = 180 ms.

Consonant formants: F1 = 365Hz, bandwidth = 200Hz; F2 bandwidth =
100 Hz; F3 bandwidth = 150 Hz; F4 = 4512 Hz, bandwidth = 100 Hz.

Vowel formants: F1 = 965 Hz, bandwidth = 200 Hz; F2 = 1807 Hz,

bandwidth = 100 Hz; F3 = 3164 Hz, bandwidth = 150 Hz; F4 = 4512 Hz,

bandwidth = 400 Hz.

F0: 221 Hz in the consonant portion; 247 Hz in the vowel portion.

Tables providing the complete details of all the speech synthesis

parameters can be found in the Supplementary Material (Table S1 on

p. 24, Table S2 on p. 25, and Table S3 on p. 26).

Behavioral Testing Outside the Scanner
Outside of the scanner, the subjects were presented with an AX same/

different discrimination task in order to determine their d# sensitivity

scores to changes along the F2 and F3 dimensions. Pairs of stimuli from

the High-F2/High-F3, High-F2/Low-F3, Low-F2/High-F3, and Low-F2/

Low-F3 regions of the formant space were presented: 96 trials in total,

of which 24 were same-pair trials and 72 were different pairs. The

stimuli were pseudorandomly ordered for each subject, and the within-

pair presentation ordering was counterbalanced. The onset-to-onset

interstimulus interval for each pair was 800 ms. For signal detection

theory analysis, the pairings were grouped according to whether the

stimuli within the pair differed in F2 or F3. Hit and false alarm rates

were calculated and then converted into d# scores.

Subjects
Twenty subjects participated in the experiment: 10 were native

American English speakers and 10 were native Japanese speakers.

The Japanese subjects had lived in the United States for between 6 and

12 months. The English speakers were aged between 21 and 34 years

and were all female. The Japanese speakers were aged between 20 and

37 years; 4 were male. All subjects gave written informed consent, as

approved by the Human Subjects Institutional Review Board of the

University of Washington.

Results

English versus Japanese Differences in Pattern
Separability in Right Heschl’s Gyrus

The results of this group-level analysis are shown in Figure 3A.

It can be seen that one region is primarily ‘‘activated’’: right

Heschl’s gyrus (primary auditory cortex). The word ‘‘activated’’

is in quotation marks here because the quantity being plotted is

not fMRI BOLD signal change, as in a conventional analysis, but

instead is the amount of information present at each voxel

(Kriegeskorte et al. 2006), in this instance the degree of

separability of the various evoked activation patterns.

Another sense in which the ‘‘activation’’ shown in Figure 3A

must be interpreted differently from standard fMRI results is

that it shows the locations of the centers of the spheres of

information, in which the separability values of the local spatial

fMRI patterns are calculated. The voxels within each such

spatial neighborhood extend up to 14 mm away from each

sphere’s center, and all these voxels can contribute equally to

the pattern separability statistic that is assigned to the center

voxel. Although standard fMRI analyses often resample BOLD

images into smaller voxels, the information-based analyses here

are calculated on voxels that have been neither smoothed nor

resized as such operations could disrupt spatial patterns in the

data. Figure 3B shows, in blue, the region spanned by the voxels

that contribute to the ROI in panel (A). Shown in yellow are the

voxels spanned by the Heschl’s gyri of the subjects, manually

traced on each individual’s T1 anatomical scan. The areas of

overlap are shown in green. It can be seen that because the

spheres of information are centered on the anterior medial part

of Heschl’s gyrus, they include some voxels from the

neighboring posterior insula, in addition to those from auditory

cortex. The local fMRI pattern separability is a collective

property of all of a sphere’s voxels taken together and cannot

be pinpointed to the sphere’s center, despite the graphical

convenience of representing it in that way.

In addition to looking at brain-wide statistical maps, the same

neural data can be examined in a close-up view, by plotting the

individual subjects’ data drawn from specific ROIs. Figure 4A

shows that the statistical separability of the fMRI patterns in

right auditory cortex strongly predicts how well the subjects

could perceptually discriminate the stimuli (r = 0.796, P < 3 3

10
–5). It is important to emphasize that the right auditory cortex

ROI emerged as the result of a purely group-wise comparison of

pattern separability: English versus Japanese. It would be

perfectly possible, given the between-group pattern separability

differences, for the within-group differences to fail to correlate

with the perceptual d# scores. For example, the within-group

patterns of the Japanese and English subjects in the scatterplot

could be flipped left to right without altering the group-wise

difference in the slightest. Such a pattern, however, would

greatly reduce any brain--behavior correlation sought across all

20 subjects. It is therefore noteworthy that the right auditory

cortex reveals such a strong correlation across individuals as

well as across groups. This can be quantified by performing

a partial correlation (r = 0.389, P < 0.05, 1-tailed), which shows
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that the positive correlation which was observed to hold across

individuals remains significantly greater than zero, even after

removing any effects of group membership.

As well as the right auditory cortex information-bearing acti-

vation, the English versus Japanese pattern separability contrast

also revealed some activation in the head of the caudate,

bilaterally. This activation was not as statistically significant as

the right auditory cluster, nor did it show that cluster’s

correlation across individuals as well as groups. Nonetheless,

this finding is of some interest in the light of a number of recent

studies showing the involvement of the caudate in bilingual

language control (Crinion et al. 2006;Wang et al. 2007; Abutalebi

et al. 2008; Ketteler et al. 2008). The full data for left and

right caudate, respectively, are plotted in Supplementary Figures

S10--S12.

Differences in fMRI Pattern Separability without
Differences in Average Local Activation

Thegroup-wise differences in the separability of the fMRIpatterns

are shown in Figure 4B, and the average BOLD activations for the

F3-high, F3-low, F2-high, and F2-low conditions for the 2 groups

are shown in Figure 4C. Despite the separability of the evoked

spatial patterns, the average neural activation in this region,which

is what conventional fMRI analyses measure, did not differ

significantly along either of the formant dimensions. It can be

seen that all the different speech stimuli activated auditory cortex

to approximately the same degree. However, they created subtly

different spatial patterns of activation that the present analysis

method can detect but to which conventional fMRI analyses are

blind.

The fact that auditory cortex responds with more or less

equal intensity to different syllables is neither surprising nor

noteworthy in itself. The point that we wish to emphasize here

is that even despite this lack of any local average activation

intensity, robust pattern differences can still occur. This is

precisely the situation illustrated schematically in Figure 1.

The Converse: BOLD Activation without Between-
Condition Differences in fMRI Pattern Separability

Whereas the right primary auditory cortex showed differences

in pattern separability without corresponding changes in

average local activation, other regions of the brain exhibited

the opposite effect. That is, these regions are activated by the

speech stimuli and are hence revealed by a standard fMRI

speech-versus-nonspeech contrast, but their spatial patterns of

fMRI activation across the different formant conditions are not

separable from each other.

Using a conventional GLM fMRI analysis of the data, and

looking for regions activated on average by all the speech

stimuli, the standard set of speech-related regions were found:

Broca’s area on the left and the superior temporal gyrus

Figure 4. (A) The statistical separability of the fMRI patterns in right auditory cortex strongly predicts how well the subjects could perceptually discriminate the stimuli. This
correlation holds across individuals as well as groups, as shown by the correlation with group membership partialled out. (B) The group-wise differences in the separability of the
fMRI patterns for the English and Japanese speakers, showing the F3 differences and F2 differences in their own right, rather than the compound F3-minus-F2 difference that is
plotted along the x-axis of panel (A). (C) Despite the separability of the evoked spatial patterns, the average neural activation in this region, measured by conventional fMRI
analysis, does not differ significantly along either of the formant dimensions. All boxplots follow the standard conventions: the box center is the median, the ends are the
interquartile ranges, the whiskers are 1.5 times the interquartile ranges, dots are outliers beyond the whisker range, and the notches are such that boxplots whose notches do not
overlap have different medians at the 5% significance level.
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bilaterally, consistent with other fMRI studies of /r/ and /l/

perception (Callan et al. 2003; Jacquemot et al. 2003).

Classical Speech Areas and Pattern Separability

The regions found to be activated by the speech stimuli in our

conventional fMRI analysis and the details of their responses to

the different F2 and F3 conditions are shown in Supplementary

Figures S5, S6, S7, and S8, respectively. As well as the superior

temporal gyrus (STG) and Broca’s regions, Supplementary Figure

S9 plots the results for a left Heschl’s gyrus ROI, constructed as

a mirror image of the right Heschl’s ROI derived from the

pattern separability random-effects analysis. This allows a direct

comparison of the behavior of the primary auditory cortices in

the 2 hemispheres.

These figures show that these classical language areas are

strongly activated by all the speech conditions but without

significant activation differences between the different con-

ditions.Moreover, the different conditionswere not separable by

the SVM classifier in these regions, unlike in right primary

auditory cortex. Of these classical speech regions, Broca’s area

comes the closest to being able to distinguish between any of the

conditions, showing higher BOLD activation for F2-low than F2-

high stimuli in the Japanese speakers and a tendency, albeit

nonsignificant, for greater separability of F3 differences than F2

differences in the English speakers. It is possible that more

refined statistical pattern recognition analyses that are presented

heremight revealmore information being carried in Broca’s area.

For a better overview of the pattern separability of the fMRI

activation elicited by the various speech stimuli, it is necessary to

examine not just the activation in particular ROIs but also the

information maps across the whole brain, viewed at multiple

slices and at multiple statistical thresholds. These are shown in

Supplementary Figure S13, which shows F3 and F2 separability

individually, for the Japanese and English speakers, and

Supplementary Figure S14, which shows statistical maps of the

various F3 versus F2 and English versus Japanese comparisons.

For a full discussion of possible reasons why information-

bearing activation was found more in the right hemisphere

than in the left, see sections Why Does Phonetic Information

Show Up in Right Auditory Cortex, Rather Than the Left? and

Why Is Signal Absent from the Left, when Phonetic Processing

Is Undoubtedly Taking Place There? in the Discussion below.

Discussion

The results presented here demonstrate for the first time that it

is possible to use spatial patterns of brain activation to predict

individual differences in people’s perceptual ability. Unlike

many previous studies, in which increased activation corre-

sponds to better behavioral performance, greater perceptual

ability in the present case stems from the underlying neural

representations being more distinguishable from each other. As

Figure 4C shows, the average BOLD activation evoked by /ra/

and /la/ in English speakers is no greater than it is in Japanese

speakers. However, the statistical separability of the spatial

fMRI patterns is greater in English speakers (Fig. 4B), and this

increased neural separability predicts individual differences in

people’s perceptual ability to tell /ra/ and /la/ apart (Fig. 4A).

This finding was made possible by using the information-

based fMRI approach (Kriegeskorte et al. 2006) to access

different neural representations that were colocalized within

the same cortical area, then by quantifying the distinctness of

those representations using a linear classifier algorithm, and

finally by comparing that derived neural measure to the

subjects’ behavioral discrimination scores.

This shows not only that spatial fMRI patterns can be directly

connected to behavior but moreover that the statistical

properties of these fMRI patterns can quantitatively predict

very specific aspects of behavioral performance, both across

groups and across individuals. It should be noted that the fMRI

pattern separability measure was calculated purely as a function

of the neural data and did not incorporate any information

about subjects’ group membership or behavior.

Relation to Previous Studies

There has been very little evidence to date that fMRI spatial

patterns have any relation to behavior at all, as opposed to

merely being epiphenomena. Certainly these fMRI patterns arise,

albeit indirectly, from neural activation, and neural activation is

what gives rise to all perception and cognition; the patterns

would therefore be expected to be correlated with ongoing

perceptual and cognitive events, as has indeed been shown to be

the case (Haynes and Rees 2005; Polyn et al. 2005; Haynes et al.

2007; Williams et al. 2007). The present study demonstrates that

neural data alone, without incorporating any information about

behavioral responses, can indeed be used to predict behavior,

and more specifically that the distinctness of a given individual’s

neural representations can predict their level of perceptual

ability.

Our finding that the distinctness of neural phonemic

representations varies across individuals raises the question of

how such differences arise. Studies in infants have shown that

differences in the language environments experienced in the

first few months of life play a crucial role in shaping how

formant space becomes divided into distinct phonemic catego-

ries. The theory of ‘‘neural commitment’’ (Kuhl 2004) proposes

that after those native language categories have developed by

tracking the statistics of the early language environment, it

becomes much harder for different language environments

experienced later in life to reshape auditory cortex. Even though

cortex may still be plastic (Buonomano and Merzenich 1998), its

acquired tuning makes it less sensitive to the statistics of any

new and different environments that might try to restructure it.

Studies in adults have shown that the native language

environment in which a speaker was raised is reflected in the

set of brain regions that are activated (Callan et al. 2003;

Jacquemot et al. 2003), the perceptual structure of formant

space (Iverson et al. 2003), and the amount of neural tissue

recruited by phonemic processing (Zhang et al. 2005). The

present results move beyond such studies by showing how the

distinctness of the brain’s neural representations of language can

be directly quantified.

Why Does Phonetic Information Show Up in Right
Auditory Cortex, Rather Than the Left?

Although speech stimuli generally activate both left and right

auditory cortex bilaterally, language-specific contrasts such as

speech-versus-nonspeech almost always reveal greater activation

on the left. Given that, it might appear somewhat surprising that

in the present study it was right auditory cortex, rather than the

left, whose local spatial fMRI patterns were found to contain the

greatest amount of information about which speech stimulus

gave rise to them.
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However, several recent studies have found predominantly

right-hemisphere speech-related activity. In 2 separate studies,

Alain et al. (2007) and Alain and Snyder (2008) presented their

subjects with the task of identifying 2 vowels that were played

simultaneously. The subjects found this task to be very difficult

at first, but then learned the necessary discrimination as

their performance improved during the first hour of testing.

Simultaneous event-related potential recordings revealed that

this improvement in performance was paralleled by enhance-

ments in an early evoked response (around 130 ms) localized in

the right auditory cortex. Using a different approach, Kujala

et al. (2002) studied mismatch negativity (MMN) responses to

consonant contrasts which were either embedded in the

middle of a word or presented in isolation. They found that

MMN responses were larger for the embedded contrasts in

right auditory cortex but not in the left.

Two recent studies, using magnetoencephalography (Luo and

Poeppel 2007) and electroencephalography (Abrams et al.

2008), respectively, have found evidence that the right auditory

cortex is involved in processing some of the slower aspects of

the speech signal, in a time window on the order of around 200

ms. This is the timescale in which syllables occur. Luo and

Poeppel (2007) found that the phase pattern of theta band (4--8

Hz) responses in right auditory cortex carried information about

presented speech, and Abrams et al. (2008) produced evidence

that right-hemisphere responses on a similar timescale tracked

the overall acoustic envelope of the speech stimulus.

Most directly relevant to the present work is the recent fMRI

study by Obleser et al. (2008), who showed that right auditory

cortex is sensitive to the amount of spectral information present

in the speech signal. Note that the spectral information in that

study was a function of the formants and was intrinsically part of

the intelligibility of the speech signal itself. Moreover, the right-

hemisphere processing observed in that study was very close to

the location found in the present work, namely in right Heschl’s

gyrus (see especially Figs 4A and 5A of Obleser et al. [2008]).

Thus, a growing body of recent experimental data now

corroborates the finding that right auditory cortex is involved

in speech processing. A possible explanation for why the right-

hemisphere effects found in the above studies are not more

commonly observed is that they all probed some of the less-

often investigated aspect of speech perception, such as speech

processing in the presence of auditory distractors (Kujala et al.

2002; Alain et al. 2007; Alain and Snyder 2008), the temporal

envelope and syllabic structure of speech (Luo and Poeppel

2007; Abrams et al. 2008), or spectral degradation manipulated

independently of temporal degradation (Obleser et al. 2008).

If the right hemisphere is indeed involved in speech

processing, but in ways that are missed by standard experi-

mental approaches, then it is worth asking which kinds of

speech-related neural activation might be expected to be

missed by a standard fMRI analysis. As Figure 1C illustrates, one

scenario that may very easily occur is when different speech

stimuli produce activation of equal local average intensity but

with distinct local spatial patterns. Because a standard fMRI

analysis measures only the local average intensity of activation,

the pattern changes illustrated in Figure 1C would be

completely invisible to it.

Moving from the hypothetical schemas of Figure 1 to the

actual data plotted in Figure 4, it can be seen that this situation

is exactly what was observed. The boxplots of right auditory

cortex activation in Figure 4B show that the various F3 and F2

stimulus conditions differ greatly from each other in terms of

how separable the spatial fMRI patterns that they elicit are.

However, as Figure 4C shows, when we look not at the

separability of spatial patterns but instead at average local

activation, all the different stimulus conditions appear to be

much the same. All the stimuli, whether /ra/ or /la/, induce

some activation in auditory cortex and indeed they all induce

approximately the same overall amount. However, they

distribute that activation over subtly different spatial patterns.

These differences can be captured by a pattern-based analysis,

but to a standard fMRI analysis that only measures overall

activation they must remain unseen.

Collectively, these considerations suggest the following. Left

auditory cortex carries out a large amount of language-related

processing, with the result that speech stimuli tend to activate

it with greater overall intensity than on the right. However,

right auditory cortex is also engaged in language processing but

in ways that standard experimental approaches may easily miss.

The data from the present study suggest that the overall level of

speech-related activation in right auditory cortex does not

become more intense; instead, its neural representations of

different phonemes produce different spatial patterns of

activation, with the local average staying unchanged. Previous

fMRI studies have measured this unchanging average activation

and have drawn the perhaps unwarranted conclusion that

language processing must be happening elsewhere.

Why Is Signal Absent from the Left, When Phonetic
Processing Is Undoubtedly Taking Place There?

Just as it is somewhat unusual to find evidence of phonetic

processing in right auditory cortex, it is curious that similar

signals do not also turn up on the left. We are certainly not

claiming that left-hemisphere auditory areas are insensitive to

the /r/--/l/ distinction. Such a claim would be unwarranted and

almost certainly false. Moreover, the MRI signal itself on the left

is robust, as shown by the standard fMRI analyses of speech-

versus-rest in Supplementary Figure S5, which show the

classical pattern of activation: bilateral but stronger on the left,

especially in left STG and Broca’s area. Why then the absence of

fMRI pattern separability in left auditory areas?

A plausible hypothesis is that the phonetic representations in

left auditory cortical areas may be spatially overlapping and

intermingledwith each other at a finer spatial scale than they are

in the right hemisphere. In particular, if these overlapping

representations are colocalized and fully contained within

individual voxels, then multi-voxel pattern-based analyses will

be unable to see them. By their very nature, these analyses seek

activation patterns that are spatially distributed across several

voxels. In contrast, a different method is best suited to finding

overlapping representations contained within individual voxels,

namely adaptation-fMRI (Grill-Spector and Malach 2001).

Although standard fMRI is unable to distinguish between

intravoxel overlapping activations, the method of adaptation-

fMRI is designed to do just that.

A previous study from our group using adaptation-fMRI

produced evidence that left-hemisphere speech areas do indeed

contain intravoxel overlapping phonetic representations. Raizada

and Poldrack (2007) studied the degree to which each voxel in

the brain was sensitive to the phonetic category distinction

between /ba/ and /da/ and found that the left supramarginal gyrus

showed adaptation effects which tracked the category boundary.
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This indicates that the left supramarginal gyrus contains voxels

within which distinct but spatially intermingled populations of

/ba/-sensitive and /da/-sensitive neurons coexist.

Figures illustrating direct left-versus-right comparisons for

the right auditory cortex area revealed by our analyses and its

mirror image equivalent ROI on the left are presented in

Supplementary Figures S15--S17. These analyses show that the

right auditory cortex produces strong and significant multi-

voxel pattern effects, whereas left auditory cortex does not

reach significance. (As remarked above, this is likely due to the

left-hemisphere processing occurring at an intravoxel rather

than a multi-voxel spatial scale). Given that we are not seeking

to argue that left auditory cortex lacks sensitivity to phonemes,

we would not expect the right-minus-left comparisons to reach

significance and indeed they do not.

Taken together, the Raizada and Poldrack (2007) study and

the present manuscript suggest the following hypothesis: left-

hemisphere auditory cortical regions process phonetic category

distinctions at an intravoxel spatial scale and that right-

hemisphere regions perform such processing at a multi-voxel

spatial scale. This naturally raises the question of whether

adaptation-fMRI and multi-voxel pattern-based fMRI can be

combined to investigate both spatial scales simultaneously. The

‘‘continuous carryover’’ design developed by Aguirre (2007) does

just that, and indeed, we plan to conduct a study using such

a design to investigate phonetic processing in future work.

Two very interesting neurophysiological studies are also

worth mentioning, with reference to whether speech-related

information might be encoded in neurons outside of what are

classically thought of as ‘‘speech areas.’’ Recording in the

primary auditory cortex of the ferret, bilaterally, while

presenting phonemic stimuli, Mesgarani et al. (2008) found

that the neural responses from a population of 90 neurons

were sufficient to allow a linear SVM to decode which stimuli

had been played. Their study is therefore quite analogous to

the work presented here, except that they operated at the level

of single neurons rather than fMRI voxels. The fact that primary

auditory cortex was found to contain phonemic information

both in their experiment and in the present study is especially

striking. In an even more recent study, Remedios et al. (2009)

recorded bilaterally from posterior insula cortex in the

macaque and found neurons there which responded preferen-

tially to vocal communication sounds. This posterior insula

region directly neighbors primary auditory cortex and may,

speculatively, be a monkey homolog of the posterior insula

voxels shown in Figure 3B, which fell within the span of the

spheres of information centered on the Heschl’s gyrus ROI.

No single study on its own can confirm whether or not the

above hypotheses hold true. It will be interesting to see

whether future studies using pattern-based analyses also find

information to be present in auditory cortex on the right.

Whether they do or do not, they will be measuring a quite

different type of signal than the average local activation studied

by standard fMRI. From these new types of measurements, one

may expect new types of results.

Will Similar Results Be Found in Domains beyond Speech
Perception?

As with any fMRI method, information-based fMRI processes

only a spatially coarse picture of the sluggish hemodynamic

events triggered by the underlying neural activity, which is of

course the process that really matters. Certainly, the linear

decision boundary drawn by the SVM in the 33-dimensional

space of a sphere of voxels bears little or no resemblance to the

subtle neural mechanisms by which the brain extracts in-

formation. However, what this statistical artifice does show

is that even the indirect MRI trace contains enough remnants

of the true neural information processing that it can be

meaningfully related to behavior. The present study demon-

strates not only that such information is present, but also that

this neural information is strongly predictive of individual’s

perceptual abilities.

Beyond the domain of speech perception, there are a great

many types of task in which behavioral success depends

not only upon the degree to which a particular cognitive

process is occurring but also upon the properties of the

neural representations that are involved. However, the goal of

quantifying the properties of such representations has proven

elusive, as it is only in low-level sensory cortices that well-

defined representational maps are available (Duncan and

Boynton 2003, 2007). The study presented here lays out a path

for possibly approaching that goal in higher-level cortical areas

as well.

It is an open question whether similar results will be found

to hold in other cognitive and perceptual processes and other

brain regions. The existence of colocalized but distinct neural

representations and processes is an extremely general phe-

nomenon in the brain, and it is precisely these circumstances in

which standard fMRI analyses face difficulties. Other fMRI

methods, notably adaptation-fMRI (Grill-Spector and Malach

2001; Raizada and Poldrack 2007), have also attempted to

tackle the problem of pulling apart distinct but colocalized

representations. However, adaptation-fMRI techniques require

more complex experimental designs and rest on larger sets of

assumptions, which are testable in very specific domains

(Boynton and Finney 2003) but whose broader validity is less

certain. Therefore, there is a need for new approaches to

studying neural representations, and multi-voxel pattern-based

fMRI analyses may offer a useful set of tools for developing

them. One example from a completely different task domain,

indicating the potential generality of such methods, is an

innovative recent study by Haynes et al. (2007) who found

different local spatial patterns elicited by addition and sub-

traction tasks. The present study shows for the first time that

the statistical separability of such patterns can predict in-

dividual differences in behavioral success. An analogous study

in the domain of arithmetic would ask not only whether the

patterns can predict whether an addition task or a subtraction

task is being performed but more specifically whether the

patterns can predict if the person is carrying out the arithmetic

easily or with difficulty.

Possible Practical Applications and Testable Predictions

Given this new ability to probe neural representations that

would otherwise be inaccessible, and to relate these represen-

tations directly to behavioral success, it is reasonable to ask what

this might be useful for, over and above its interest as basic

science. One concrete potential use might be for diagnosing

whether behavioral difficulties are due to problems of compe-

tence or of performance. For example, 2 children may both

achieve the same low score on a speech perception test. One

possibility is that the representational distinctions necessary for
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carrying out the test may not be properly formed in a child’s

brain. Alternatively, the underlying representational machinery,

that is, the competence, may be functioning well, but

performance issues such as attention or motivation may give

rise to the low score. From the outside, measured behaviorally,

these 2 alternatives are hard to pull apart, as the children’s scores

on the test are the same. However, by investigating the

separability of the children’s neural representations, measurable

differences may emerge. A problem of representational compe-

tence would require a very different type of training-based

intervention than would one of the performance. The link

between such neural separability and behavior suggests an

additional testable hypothesis: over the course of behavioral

training, increases in performance and increases in the

separability of the neural representations should go hand in

hand. The questions of whether such hypotheses will turn out to

hold true, and whether the new results presented here will

generalize across other perceptual and cognitive processes, are

likely to be fruitful topics for future investigation.
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